نیتروژن پذیری فولادهای گرمکار 1347، 1368 و روش پلاسماتی

رضای جمالی، فخیبلالین اشتری زاده و عبادالهمحمد حسینی

کارشناس ارشد، مهندس متالوژی دانشگاه شهید باهنر کرمان

استادان دانشگاه صنعتی اصفهان

استادان دانشگاه شهید بهشتی کرمان

چکیده

در سال‌های اخیر استفاده از پوشش‌های محتوای سطحی با هدف افزایش استحکام و مقاومت سایشی فولادهای گرمکار، وسعت چشمگیری پیدا کرده است. فراورده نیتراسیون پلاسماتی از جمله عمليات ترموشیمیایی است که متواتر از آن برای افزایش مقاومت به سایش، حفظ و جلوگیری از آلودگی این دسته از فولادهای استفاده کرد. در این مقاله به هدف بررسی نیتروژنپذیری فولادهای 1368 و 1378 نمونه‌ها از آن‌ها در سیلکهای مختلف و به روش پلاستیکی نیتروژن شده‌اند. به کمک منحنی‌های سختی و توصیف میکروسکوب نوری و الکترونی و آزمایشات مختلف XRD، نفوذ نیتروژن به سطحی‌ها شتاب و شرایط فنی نیتروژن، شاخص‌های نفوذ نیتروژن در نوع کاربری و نوع ترکیبات در اندازه‌های مورد بررسی قرار گرفت. با انجام آزمایشات مختلف، مشخص شد که از افزایش خانه‌های آبزی در فولادهای 1368، 1378 و به افزایش سختی‌های نیتروژنی تأثیر تابع ضریب فنی نیتروژن، عمک نفوذ نیتروژن برای آن‌ها کاهش یافته و افزایش سختی تأثیر چندانی بر ضخامت می‌باشد.

واژه‌های کلیدی

نیتراسیون پلاستیکی، فولادهای گرمکار، مقاومت به سایش، میکروسکوب الکترونی، آلالایز XRD

افزایش داده‌های (1) به کمک این روش، بدون کاهش چرب‌گمی مغز فولادهای سخت را نیز افزایش داده و در نهایت به یکی از روش‌های بیشترین توصیف خواهد شد. در مراحل تحلیل نورانی این پلاسمه‌های مخلوطی از N2 و H2 به قرار دادن نقطه به صورت کاندین دمای حدود 1000 درجه سانتی‌گراد به میزان آنتی‌نیتروژن و 10 درجه سانتی‌گراد به میزان آنتی‌نیتروژن را به داخل سطح فولاد نفوذ داد. در مراحل انجام دادن به نمونه می‌باشد که پس از تهیه نمونه و تهیه داده‌های (2) انتخاب کرک نیتروژنی می‌تواند به صورت نیز نفوذ خواهد داد.

1- مقدمه

فولادهای ایزبرد گرمکار، با توجه به موارد کاربردی، علاوه بر تحلیل شرایط تنفسی شدید، نیاز به پایداری مناسب در دمایه بالا نیز دارد. اما داشتن خواصی همچون چرب‌گمی و استحکام در دمایه بالا، پایداری آن‌ها، مقاومت سایشی گرم، حداکثر حالتی در دمایه بالا و نیز مقاومت به خستگی حرارتی در آنها الزامی است. حصول تركیب مناسب از این خواص تنها با استفاده از روش‌های نوین سطحی امکان‌پذیر است. قرارداد نیتراسیون پلاستیکی از جمله عمليات ترموشیمیایی است که به کمک آن می‌توان با هدف استحکام و چرب‌گمی این فولادهای سخت را به سایش و استحکام خستگی سطح آنها را افزایش داده.
توانایی نیتروژن برای افزایش باعث تجزیه دخالت فلزات نیز می‌شود. دوباره این دوگانه عمل اصلی مایعات متقابل
سابقه قطعات نیتروژن است. مطالب شکل (1) فلز و انفعالات
اساسی که در حین نیتروژن پلاسمتی اتفاق می‌افتد، ضمن
خوبی کهکشانی و نیتروژن آرگون به شتاب نشاند به مدت
کاندی و همچنین پرکشی اتمها از سطح قطعه می‌اجماد. توپی و
ترکیب دوباره پیوندهای شیمیایی با تخلیه اثری سیلیکی بیشتر
در سطح به شکل مراکم مولکولهای Fe/N باعث تجزیه
Fe/N شدید بشکتهای Fe/N باعث نفوذ نیتروژن
انمی به داخل قطعه می‌گردد (3). این روش در اثر موارد باعث
توپی یک لاک ترکیب موسم به لابی می‌شود بر روی سطح قطعه
خواهد شد. همچنین شکل (۲) شیمیایی که مناسب با ترکیب (Fe(NC)۳) (۴) است که در آن Fe/N (۴) Fe۲N،
تغییر می‌باشد. این متغیر با شکل (۲) آهن و
Fe2N(NC)3 (FeN) را دارند. در عمل علت عدم وجود ترکیب
Fe2N(NC)3 در داخل سیستم، نمی‌توان اندازه‌گیری شدن که تعداد
این فازها کاملاً متقابل قانون فازی گیپس باشد. در اثر موارد
تفریق زیریاههای مختلف به صورت (∆, ∆, ∆) و (∆, ∆, ∆)
و این (۴ و ∆ به تنهایی) می‌باشد (۴). ترکیب این فازها به
عنصر آلاینی فلزات درصد کربن اولیه و اکثربه نیتروژن
بستگی دارد. در صورت اینکه Fe/N رود سطح
می‌توان به شرایط بیشتر از متقابل با شیمی و انعطاف‌پذیری
دست پیدا کرد. سختی محاسبه در حدود ۹۰۰۰ و درک
است. با توجه به شکل نخ پایه یکی از به یا یادو دارد، کنترل کننده
مناسی برای وضوح سیلیسی و خردهگی Fe/N ضریح سطح
است. در لایه بسیاری که به لابی نفوذی موسم است، فلزات با نفوذ
بین نشانیدن به حال فوق اشباع رشد است. بیشتر یار
و وارده به قطعه توسط این قسمت تحمل می‌شود (۴). دما، زمان،
ترکیب فلزات نرخ و ترکیب گاز از عوامل مؤثر بر نرخ
نیتروژن پلاسماتی می‌باشد. با استفاده از
می‌توان این روش به عنوان گردش و اندازه‌گیری فصول از قابل
فلز و انفعالات نیتروژن پلاسماتی
نتیجه‌گیری‌های نیتروزون به کمک دستگاه سخت‌سنج میکرو و بکرز و با وزن‌های 100 گرم اندازه‌گیری شد. به کمک تصور میکروسکوپ نوری و الکترونی و همین طور آنالیز عضوی و S-XRD نمود. وضعیت نیتروزون و نوع ترکیبات آنها مورد بررسی قرار گرفت و در انتهای به کمک رسم منحنی‌های \[\frac{d^2}{dt^2} \left(\frac{1}{K} \right) \]

نیتروزون در فولاد مورد نظر انجام گرفته است.

نتایج و مباحث

شکل‌های 17 و 31
نامده نیتروزون‌پذیری فولاد‌های 1,2367 و 1278، و 1278 می‌باشد. در این تحقیق دما و ترکیب فولاد بیشترین تأثیر را بر عمل و سختی لایه نفوذی داشته‌اند. با افزایش دما علایم تغییرات دیده شدند. فعالیت نیتروزون در دخل پلی‌سامه‌های دامی نمونه‌ها نیز افزایش یافته و باعث افزایش عمق نفوذ نیتروزون شده است. در شکل‌های 17 و 31، تغییر ضخامت لایه نفوذی در سیکل‌های مختلف برای هر دو فولاد آورده شده است. تأثیر دما بر ضخامت لایه نفوذی و رشد لایه سفید در فولاد‌های 1,2367 و 1278 به کمک منحنی‌های شکل‌های (217) بیشتر مشخص شده است. در سیکل‌های (17)، توجه به بازیابی پنجره دما، فرآیندهای نیتروزون از دو واقعیت منطقه‌های سیلیزه‌ای و کاربردی دیده شده و همچنین لایه‌های آرامکاهی در سیکل‌های (17)، به همین علت است. با توجه به میل زیاد عناصری همچون کروم، مولیبدن، تکنندر و واقعیت به شکل ترکیبات نیتروزونی و وجود این عناصر در دستگاه بالاخره در فولاد 1278، علایم به ترکیب ذرات نیتروزونی، احتمال روابط کاربردی آینهای را نیز در مزرعه دانه افزایش داده و از آنجاییکه مرز دانه‌ها می‌تواند ترین مرسی نفوذ نیتروزون به داخل فولاد به حساب می‌آید، شکل‌بندی روابط در این فاصله ممکن شکل‌های (17) و 31، تأثیر منفی بر ترکیب فولاد در فولاد‌های 1,2367 و 1278، داشته و در سیکل‌های مشابه، باعث کاهش ضخامت لایه‌های نفوذی این فولاد، نسبت به فولاد
The graphs show the relationship between distance (m*10^-6) and hardness (HV). The hardness decreases as the distance increases. The trend is consistent across different temperatures and diffusion thicknesses.

Temperature and diffusion thickness affect the hardness. At higher temperatures and thicker diffusion layers, the hardness is lower.

Therefore, it is important to control these parameters to achieve desired hardness levels.
شامل میشود. در حالی که با افزایش دما در 900 درجه سانتی‌گراد، علاوه بر درشت‌تر شدن رسوبات و تجمع بیشتر آنها در مرز دانه‌ها، رسوب ذرات نیتریدی روند تغییرات مارکزینی درون دانه‌ها نیز بیشتر می‌باشد.

درشت تر رسوبات و کاهش تراکم آنها، دیلی بر سنتی زیاد نمونه‌های 1،478 و 1،468 در دمای 500 درجه سانتی‌گراد، کاهش سیلیکاهایی (111) 1/2 بوده است. در دمای 50 درجه سانتی‌گراد تغییرات سنتی‌گرادیایی آنها نیز تبدیل به سیلیکاهایی 111 بوده است. با توجه به آزمایش‌های پیشین، بیشترین افزایش سختی مربوط به تغییرات در دمای 50 درجه سانتی‌گراد است. با توجه به تنها یک ماده سنتی‌گرادیایی 111 آنها، سطح سختی افزایش می‌باشد. در سیلیکاهایی 111 در دمای 50 درجه سانتی‌گراد با توجه به تنها یک ماده سنتی‌گرادیایی 111 آنها، سطح سختی افزایش می‌باشد.
4- نتیجه‌گیری

با اعمال نیتراسیون دیاکسیسیمی بر روی فولاتهای نیتروژن گرمکار با حفظ استحکام و ناحیه زیست فولاته، سختی و مقاومت به سایش سطح آن بالا می‌رسد. مکانیزم افزایش سختی در فولاتهای 1.2367 و 1.2367 شکل گیم می‌باشد. پسین یک‌ویک افزایش

عناصر آلبانی است. از افزایش دما نتیجه نیتروژن به داخل فولاد راه یافته، ضخامت خاص نفوذی آنزیم آزمایش و تجمع در و راه‌اندازی شدن رسانای ترکیبی، سختی این لیاها کمتر می‌شود. در دمای‌های بالا و در مزایا، شاهد ریسوب و رول تی‌یه‌ای مارتنزی درون دانه‌های نیتروژن می‌باشد. از افزایش ذخایر آلبانی، تجمع رسانای در مزایا دانه باعث چاپ‌شدن خصائص

نفوذی و افزایش سختی خواهد شد. علاوه بر این با افزایش این عنصر نفوذی ترکیب نیتروژن به داخل فولاد نیز کمتر خواهد شد. بر خلاف لیا نفوذی، افزایش عنصر آلبانی تأثیری جدی‌تری بر ضخامت این لیا به سرفه نداشت و نهایی زمان تشکیل آن را به تعویق می‌اندازد. اکثریت گروهی درصد FeN(e) در این سطحی زایدتر شده در صورت نیاز به عمق‌های نفوذی بالای این توجه به ترکیب FeN(e) بهتر است این لیا به روش‌های مکانیکی حذف شود.

5- تنکر و قدر دانی

با داده که از همکاری و مساعدت مدیریت محترم شرکت مس شهید بهتر کرمان، جناب آقای مهندس عباسی و همچنین از آقایان مهندس‌های تنی‌پور، هدایت‌های و ابراهیمیان به خاطر محبت‌های وصف تبدیل‌شان در ارائه این کتاب کمال تشکر به عمل آمده.
ضمیمه: فرمول‌ها و روابط ریاضی

\[Fe + N \rightarrow FeN, Fe_2N, Fe_3N \]

\[D = \frac{d^2}{t} \]

\[D = D_e \exp\left(-\frac{E}{KT}\right) \]

\[D = \frac{1000M}{T} \Rightarrow \frac{dT}{dT} = \frac{-1000M}{T^2} \]

\[D = D_e \exp\left(-\frac{E}{KT}\right) \Rightarrow \frac{dT}{dT} = \frac{D_e e^{-\frac{E}{KT}}}{KT} \]

\[\frac{-1000MK}{E} = D_e e^{-\frac{E}{KT}} \]

\[D = \frac{1000MK}{E} \]

مراجع

دستور العمل نحوه تهیه مقاله جهت چاپ در مجله علمی تخصصی مهندسی مواد دانشگاه آزاد اسلامی مجلسی

نام و نام خانوادگی نویسنده اول، نام و نام خانوادگی نویسنده دوم و نام و نام خانوادگی نویسنده سوم

ستم با مرتبه علمی نویسنده اصلی مقاله به عنوان مثال عضو های علمی گروه مواد دانشگاه آزاد اسلامی مجلسی

ستم با مرتبه علمی نویسنده دوم

ستم با مرتبه علمی نویسنده گان دیگر

چکیده

در این مقاله نمونه، روش تهیه مقاله، قسمت ها و بخش های مختلف آن، انواع قلمها و اندازه آنها که در نهایت یک مقاله برای انجام علمی و پژوهشی مهندسی مواد دانشگاه آزاد اسلامی مجلسی. به کار می رود تا آمده است. کلیه شیوه های مرود نیاز برای به شیوه (Style) مختلف مقاله، مانند عنوان، نام، صفحه چکیده و من، از بهتر تعیین شده و تناهی کافی است که این موضوع را بر مقاله تهیه شده توسط مؤلف تطبیق دهد. به منظور اجرای این موضوع، یک گروه 200 کلمه به طور صریح موضوع و تأیید پژوهش انجام شده را مطرح کند! عنی بیان کند که چه کاری، چگونه و که چه توجهات حاصل شده است. در چکیده نباید هیچ گونه جزییات، جدول، شکل، یا فرمولی را درج کرد.

واژه های کلیدی

حداکثر پنج واژه یک یا چند کلمه ایکه موضوعات اصلی، فرعی و سایر موضوعات مرتبط با مقاله را دسته بندی می کند، به عنوان واژه های کلیدی انتخاب شوند.

استفاده از آنها به سرعت کلی مقاله خود را یک شبیه مورد نظر و Copy & Paste نموده و

Copy & Paste

تطبیق دهنده این کار با استفاده از ابزار، Format Painter در این ترم افزار به سادگی انجام یکدیگر است.

چنانچه هر دیل نوتوانان این نمونه مقاله به عنوان الگوی استفاده کنید، به موارد زیر توجه نمایید:

- اندونه صفحات با 21/2 در 2/8 و نمایش حاشیه نمایش با 4 پا به چپ و راست صفحات برای

- 25 سانتی متراً مرز انتخاب شود.

- مقالات به صورت دو ستونی، هریک با عرض

- 7/9 سانتی متراً تهیه می شود و فاصله دو ستون

- 10 خواهد بود.

- مقدمه

نوشتار حاضر روش آمده کردن مقالات علمی و پژوهشی

را توضیح می دهد که به منظور چاب در مجله علمی تخصصی مهندسی مواد دانشگاه آزاد اسلامی مجلسی داوری و پیشرفت

شاداند. این شیوه نامه براساس برخی از قابلیت های موجود

نگیخته شده است. نکته مهمی که

در درم اخبار

لازم است برای تهیه نسخه آماده به چاب مورد توجه قرار گیرد

این است که شیوه

های مورد نیاز برای کلیه قسمت های

مقاله، در این نمونه مقاله تعیین شده و می تواند با
<table>
<thead>
<tr>
<th>عنوان مقاله</th>
<th>موضعیت استفاده</th>
<th>نام قلم</th>
<th>انداده قلم</th>
</tr>
</thead>
<tbody>
<tr>
<td>عنوان بخش ها</td>
<td>متعدد</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>عنوان بخش چکیده و کلمات کلیدی</td>
<td>متعدد</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>عنوان مقاله</td>
<td>متعدد</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

در انتهای صفحه، مربوط آورده شوند.

نکته: در جایگاه نوشته، می‌توان از فیلترینگ استفاده کرد که به‌صورت کامل موجود گردید.

Title: فصل نام اصلی تخصصی هندسه مواد دانشگاه آزاد اسلامی واحد ملکی / سال او.../ شماره او.../ تابستان ۱۳۸۶

تعیین مقدار: برای قلم لاک‌های همگون از Times New Roman استفاده می‌شود که اندازه آن همگون است. برای کمتر از اندازه فارسی در مواردی مورد استفاده خواهد بود.

توضیحات: می‌توان از باره‌ای خاص در انتهای مقاله و در فاصله مجزا نام و نوع مواد استفاده کرد.

مراجع: می‌توان از باره‌ای خاص در انتهای مقاله و در فاصله مجزا نام و نوع مواد استفاده کرد.

Header and footer: سیستم‌های مختلفی در پایین صفحه قرار گیرد.
3- قولای نوشته‌ای

شیوه‌ای و رسالی‌های اخلاقی و حکمتیار‌هایی در جهان عرب، از جمله نوشته‌ها و مطالبی که در این امر، که در اینجا نظریه و اخلاق بشریت را به عنوان یک چکسته به وجود خود که در میان از آنها استفاده شده و توضیح داده شده بانیت، در نوشتن تلاش شود تا به موضوع اصلی مقاله پرداخته شود تا ذهن خوانندگان از انحراف نسبت به سلسله مطالب مصنوع بماند. تمام جملات دست کم یک بار مورد شوند تا از کامل بودن و صحبت ها از نظر دستور زبان فارسی اطمینان حاصل شود. در نتیجه، شود که جملات یک بند (بارگراف) سلسله وار به هم مربوط بوده، یک موضوع را دنبال کنند.

ویژگی‌های نویسندگی

در این بخش، نکات مهم درک انجام شده به طور خلاصه موردن شده و نتایج نویسنده از آن توضیح داده می‌شود. سهم (Contribution to Knowledge) نیز به آن بررسی می‌شود تا به کمکی، برای هر کسی چکی که موضوع به این مطالعه، جایی که انجام شده است کننده، نکات مهم و قابل پژوهش جدید را مطرح کند، ویا گسترش موضوع به ویژه به سمت، دیگر، پیشنهاد دهد.

ویژگی‌های مراجع

مراجع به ترتیب شماره در متن منتشر شده و در انتهای مقاله آورده شوند. دقت شود که تمام مراجع در متن مورد ارجاع واقع شده است. مثال یافته‌های مورد انتخاب، این مقاله نموده، برای حالات بیشتر و برای هر دو زبان فارسی و انگلیسی در نظر گرفته شده است:

• کتاب‌ها
• پایان‌نامه‌ها و تحقیق‌های پژوهشی
• مقالات مندرج در مجلات و همایش‌ها

فقط در نظر گرفته شده متأخر نوشته مراجع، مانند مت جداول و شکل‌ها بپذیرد. ابتدا بیش از 9 است. نهایی از کتاب‌ها و مقالات پژوهش منابع شوند. برای عناوین مراجع انگلیسی به جای (italics) انتخاب شود.
دکتر کارل هالِلِین باید توجه شود که عبارت داخل آن برای توضیح است که از اجزای جمله محسوب نشده و در صورت حذف خلفی به آن وارد نمی‌شود. در مقابل، گیومه برای برخی گردن‌جنبی از جمله به کار می‌روند.

علاوه بر این‌ها، [Brackets] و {Parentheses} و (Accolades) و گیومه‌ها [Brackets] پایه به کلمات داخل خود متصل بوده و از کلمات قبل و بعد از دورن، آن به اندماز یک حرط قافل‌سازی داشته باشند.

خطوط تیره (Hyphen) در اینجا به دلیل از کلمات قبل و بعد خود یک حرط قافل‌سازی داشته باشد، مگر آنکه قبل یا بعد آن ها عدد باشد که باید به آن پیچیدن.

دقت شود که تمام نقاط اجزای جملات، از دو نقطه، ویرگول (کاما) و ویرگول نقطه، باید به کلمه قبل از خود بیگذارند و از کلمه بعدی نقطه یک حرط قافل‌سازی بگیرند و ویرگول می‌تواند اجزای یک جمله را درجی که نیاز به مکث وقت ازهم جداگانه؛ حال آنکه ویرگول نقطه براي جداسازی دوم جمله که با هم ارتباط معنی‌دار دارد به کار می‌رود.

درجی که نیاز به یک حرط قافل‌سازی خالی بین کلمات وجود ندارد، از آن استفاده نشود؛ مگر آنکه کلمات درهم رفته و خوانایی جمله یا عبارت کاهش یابد. مانند: وقتی یک بیکسان از انتهای یک کلمه و ابتدا کلمه به دنبال هم قرار می‌گیرند، مثل: این استفاده می‌شود.

روابط قافل‌سازی بین کلمات فارسی ضروری بوده و عدم رعایت سبب عطش املاکی می‌گردد. یعنی اعمال مثل: وجود ندارد؛ باید به صورت وجود ندارد؛ نوشته شود.
4- اشکال، جداول و عبارات ریاضی

مناسب بودن وضعیت شکل‌ها، جدول‌ها و روابط ریاضی در قالب درک بودن مقاله نقش اساسی دارد. توسعه آگاهی است که برای تولید تمام این به عنوان از قابلیت‌های موجود در Word نرم‌افزار استفاده شود و برای این خصوص محدودیتی وجود ندارد.

جدول و اشکال باید در وسیله متن تظیم شوند. برای انتخاب فرم و نگاه آن در متن و عنوان جداول و اشکال به جدول (1) رجوع شود:

جانشین شکل یا جدولی در یک ستون نمی‌گفتند. در اینجا می‌توان آن را در دو ستون قرار داد و مشروط به آنکه در یکی از سه موقعیت زیر صفحه بیده شود:

- ابتدا یک صفحه
- انتهای یک صفحه
- انتهای مقاله و درست پیچ از مراجع.

برای این منظور لازم است صفحه‌بندی در موادی را روبروی منظور بدانید. وضعیت دستونی به یک ستون تبدیل شود. برای آنکه به اشتای دچار نشود، از نمای View | Normal استفاده کردی، قبل و بعد از نص نمایش گذاری شکل مربوط به صورت زیر ایجاد کنید:

Insert | Break | Section Break | Continuous.

برای اجرای صفحه بیده منظورهای می‌توانید از متغیرهای اضافه که قبلا یا بعد از اشکال، جداول یا مراجع درج می‌کنید، بهره ببرید.

شکل‌ها

در مورد اشکال، جوانشین امکان ندارد. Copy | Paste با نرم‌افزار Copy | Paste جوانشین امکان ندارد.

اصلی تولید کننده شکل (یا گراف) موجود نیست. از ابزار اضافه شود. برای این منظور لازم است اشکال Insert | Picture در دفترچه منظور جایگزینی شود. مرور درک بر خصوصی یکی قابل ذخیره شده باشد. اگر شکل از نرم‌افزار می‌توانید به حیط Word اورجینال است، بهتر است اشکال با استفاده از ابزار Edit Picture بازیابی و ویرایش شود. دقیقاً در RealISE با استفاده از ابزار Layout نمایش و In line with text در نمایش ویرایش شود.

برای ابزار Equation Editor از نرم‌افزار نرم‌افزار Copy | Paste درست پیچ از مراجع.

روابط ریاضی

برای نوشتن روابط ریاضی ابزار Equation Editor را از کارآیی بسیار بالایی برخوردار است. تمامی نمادهای مورد نیاز در ابزار بسیار بیشتر است.

توضیحات تمام متن‌ها، پارامترها و نمادهای جدید در روابط، جوانشین پیش از آن توضیح داده شده‌اند. باید بدون فاصله بعد از رابطه بیان شود. مانند رابطه عمومی میان نش و کرنش در فرمول نورد کردن:

\[e = A\sinh(\alpha n) + \exp\left(\frac{-Q}{RT}\right) \] \hspace{1cm} (1)

که در محاسبه بالا Q، n، α، A ثابت‌های معمول، ر تابعی خودکاننده، Q اکتشافی به این تغییر شکل‌گر، و تابع گذرا می‌باشد. اگر تعداد متفکر و پارامترها برای تعریف درادامه مت بیاد است، از هفتم علامت در بخش ضمایم استفاده و یا به صورت فهرست در زیر رابطه تعریف شود.

توجه شود که در نوشتن روابط ریاضی می‌توان بدون نیاز به ابزار Equation Editor از بالاترین زیر نویسی و حروف
شماره گذاری و ارجاع

کلیه جداول، شکل‌ها و روابط ریاضی با یادداشت‌های مربوطه استفاده شده‌اند.

dE = \int_0^\infty (2\pi R_t \sigma \cdot \frac{d\varepsilon}{R}) dx + \int_0^\infty (2\pi R_t \sigma \cdot \frac{d\varepsilon}{R}) dx
\int_0^\infty \left(\frac{\pi \sigma t}{A} \right)^{\frac{1}{2}} \left(\frac{\cos(\theta)}{R} \right) \frac{d\theta}{R} dx
+ \int_0^\infty \left(\frac{\pi \sigma t}{A} \right)^{\frac{1}{2}} \left(\frac{\cos(\theta)}{R} \right) \frac{d\theta}{R} dx

و با شماره‌ی این را نیز در سطحی مستقل قرار داد. در این
حال با پدیده‌ای دوم به بعد در فرمول‌های توابع فیزیکی شروع شود.
اگر از نظیم دل‌های نازی (Size)، نتیجه می‌گیریم که اندازه‌های مفیدی با اندکی حرکت
افزایش یافته‌اند.

شماره‌گذاری

شماره گذاری مراجعه به نحوی صورت می‌گیرد که در
انتهای این نوشته‌آمده‌اند. برای ارجاع به مراجعه نیز تناها از
شماره‌گذاری داخل دوکلاب استفاده شود [1] و نیز نه در
مرجع [1]، نبست، مکان‌آتک جمله‌ای با همین عبارت آغاز شود,
در مرجع [1] ... برای ارجاع به چند مرجع، آنها را با گول

که در نهایت جمله‌ی مانده، قبل از نوشته قرار می‌گیرد.

پیچ‌شده‌های لمز برای این نحوه شماره‌گذاری و ارجاع در
الگوریتمی نیست که تبداً ها، الگوریتم‌ها و سایر
تکمیل‌نیروی‌های عادی داخل می‌تواند با اعدادی با حروف
دلخوای به نحوی که تداخلی بیش نیاید، انجام شود.

شماره‌ها و توضیح تمام جداول به نحوی که در جدول
(1)
در این مقاله نمونه، مشخصات یک مقاله آماده به چاپ برای مجله علمی تخصصی مهندسی مواد دانشگاه آزاد مجلی بیان شده. مهم‌ترین مشخصات عبارتند از: ابعاد و حواشی صفحه و ستون ها، نحوه تهیه عنوان و چکیده به فارسی و انگلیسی، بخش‌های ضروری، نحوه شماره‌گذاری بخش‌ها و زیربخش‌ها، نحوه شماره‌گذاری جدول‌ها، شکل‌ها و روابط ریاضی و ارجاعات به آنها، فهرست‌بندی، مرتب سازی و شماره‌گذاری مراجع. و بالاخره انتداب و نوع قلم‌ها.

مؤلفان محتوی مقالات تلاش نمایند تا بتواند به نکات مطرح شده، ضمن آنالیزی ای بازاریابی قابل استفاده در ترم افزار، مقالات بپذیرند شده را به سرعت برای چاپ آماده سازند.

7- تقدیر و تشکر

بخش تقدیر و تشکر به طور مختصر و در یک بند تنظیم شد. به عنوان مثال، نویسنده مقاله برخود لازم می‌داند که از مدریب‌وایحات تحقیق و توسعه مجتمع فولاد مبارک، به خاطر
Steel Making Process Influences the Properties

A New Hot Work Tool Steel for High Temperature and High Stress

References

