پرسی عوامل موتور بر انتشار CO2 در ایران (متلاطم موردی نیروگاه‌ها)

دکتر مرجان دامن کشیده
دکتر محسن نظری
الهام سادات رضایی

چکیده:
مسائل زیست محیطی به خصوص تغییرات آب و هواپی به دلیل افزایش گازهای گلخانه‌ای در چند دهه اخیر، مسئله‌ای جهانی شده است. انتشار CO2 مه‌مترین عامل در افزایش گازهای گلخانه‌ای می باشد. امروز موجود در ایران نشان می‌دهد که سریان انتشار CO2 از 6 کیلوگرم در سال 1346 به 7 کیلوگرم در سال 1382 و 7 کیلوگرم در سال 1386 رسیده است که به شیوه برای شده است.

هزینه‌های اجتماعی تخریب محیط زیست در اثر مصرف حامل‌های انرژی فسیلی در کشور در سال 1384 برای گازهای SPM NOX . SO2 . CO . CH4 میلیارد ریال می‌باشد که معادل 92195 میلیارد ریال بوده است.

سهم CO2 میلیارد ریال بوده است که حدود 967 میلیارد توسط نرگوزه‌ها انتشار یافته است. (نظری و بهخسی زاده، 1389، 15-16 در این مقاله با استفاده از 1 لگاریتمی محاسبه از عوامل مؤثر بر انتشار CO2 به اثر تولیدی، ساختمانی، شدید انرژی و ترکیبی به اثر تولیدی، ساختمانی، شدید انرژی و ترکیبی SPM NOX . SO2 . CO . CH4 در این مقاله با استفاده از 1 لگاریتمی محاسبه از عوامل مؤثر بر انتشار CO2 به اثر تولیدی، ساختمانی، شدید انرژی و ترکیبی)

نفوذ تجزیه شده است. این تحقیق در دوره زمانی (1385-1388) و برای نرگوزه‌ها کشور انجام شده است. نتایج به دست آمده از تحقیق نشان می‌دهد که مه‌مترین عامل در انتشار CO2 عامل تولیدی می‌باشد. با توجه به نتایج حاصل از مدل می‌توان با استفاده از بیوه‌های وری انرژی (کاهش شدید انرژی) و استفاده از سوخت‌های

Email:M.Damankeshide@yahoo.com
Email:DM.Nazari@gmail.com
Email:Elham.Rezaii@gmail.com

1. Logarithmic MeahDivisia Index
 населمانه علم‌های اقتصادی (سال سوم، شماره 12، پاییز 1389)

طبیعتی به جای دیگر سوختها و با به کار گیری نیروگاه سیکل ترکیبی نسبت به سایر نیروگاه‌ها برای تولید برق انتشار CO2 را بدون کاهش تولید برق کاهش داد. به رغم کاهش نیروگاه سیکل ترکیبی نسبت به سایر نیروگاه‌ها برای تولید برق

واژه‌های کلیدی: محيط زیست، انتشار CO2، تجزیه عوامل، نیروگاه، اثر تولیدی، اثر ساختاری، اثر شدت انرژی

طبیقه بنیاد JEL: Q40، Q41
فصلنامه علوم اقتصادی (سال سوم، شماره 12، پاییز 1389)

مقدمه:
ازفاشی اهمیت محیط زیست به دلیل دانش و سیاست از کارآمد و خدمات ارزشمندی است که از لحاظ اقتصادی برای انسان و جامعه فراهم می‌آورد. خدمات محیط زیست به انسان و جامعه را به توان در چهار دسته زیر خلاصه کرد:

1- حفظ از زندگی
2- عرضه منابع طبیعی
3- جنبش ضایعات محصولات
4- عرضه خدمات رفاهی

محیط زیست دستگاه زیست شناختی شیمیایی و ویژه‌کننده فراهم می‌آورد که افراد بشر را قادر به اداه‌سازی باید. این دستگاه شامل نظام جو، رودخانه، خاک، گیاهان و حیوانات می‌شود. خدمات این دستگاه توسط خانوارها مورد استفاده قرار می‌گیرد و برای ادامه جهان بیشتر ضروری هستند.

محیط زیست مواد خام و انرژی مورد نیاز برای فعالیت‌های اقتصادی بناهای به مصرف خانوارها را تامین می‌نماید. این متان با توجه به نوع و تنوعی که در این منابع باعث مشکلاتی در سیستم فعالیت‌های تولیدی جامعه می‌شود.

همچنین محیط زیست قادیر به دفع بسیاری از ضایعات تولید شده بوسیله بنگاه‌ها و خانوارها می‌باشد. این اتفاقات محیط زیست برای جنبش ضایعات نامحدود نبیز. تجزیه و تحلیل صنعتی اتفاق‌ها باعث افزایش سریع در آلودگی رودخانه‌ها و دریاچه‌ها شد.

کارکرد دیگر محیط زیست این است که خدمات رفاهی ایجاد می‌کند. منافع طبیعی وفظ برای فعالیت اوقات فراخوانگار، کسب مطابقت از گردشگاه‌ها و جنگل‌ها و رودخانه‌ها از کارکردگی محیط زیست می‌باشد. هواه نیازک، رودخانه گنگ، گوه‌های آبوده ... همه مطابقت انسان‌ها را از این منابع طبیعی می‌کاهد (نظری و بخشی زاده، 1389، 15-16)
مشکلات زیست محسوبی که به طور فراوانه ای ظهور و به میزانی از آلودگی ها، خطرات و تغییرات زیست بوم را در بر گرفته است. ابعاد محلی، منطقه‌ای و جهانی یافته است. برخی از مشکلات زیست محسوبی رشته‌ای دربرگیرنده دارند (مانند بیت خط افتادن سلامتی انسان) ویا (ای دیگر به طور تصاحیفی نشان می‌دهند (مانند آزاد شدن مواد سمی و داخل‌نکردن). به‌عنوان اکثر مشکلات زیست محسوبی ناشی از تولید انسانی و باعث آن استفاده نهایی می‌باشد که این عوامل به طرح مستقیم و یا غیر مستقیم مخاطرات و ویعات زیست محسوبی را سبب می‌گردد. انتزی و محيط زیست پیچیده بوده و به طور ثابت و قابلیتی ای رو به برداشتجاست. افزایش آگاهی در مورد عواقب زیست محسوبی در حالی است که بر علاوه بر نقاط کم‌کار است. در نتیجه اگهی و داشت در خصوص مکانیزم‌های واکنش متناسبی فعالیتهای تاریک بوده و هنی در پایه ای از موارد تمیق برانگیز است.

1. خسارت و مهمی موضوع:

با توجه به ده‌های اخیر، مسائل زیست محسوبی به دلیل افزایش گازهای گلخانه‌ای، اهمیت زیادی در سیاست‌گذاری ملی و جهانی داشته است. افزایش گازهای گلخانه‌ای مانند

\[\text{CO}_2 \]

با عرضه آمدن پیداکردن تغییرات آب و هوایی و گرمایش جهانی، ترکیب آن به این اثرات بحرانی در معرض و باعث افزایش گازهای گلخانه‌ای مانند

\[\text{SO}_x, \text{NO}_x \]

به همراه دارد. هر چند افزایش گازهای گلخانه‌ای کشش که در مورد یک‌جایی خواهد داشت، باعث بروز مخاطرات بهداشتی و سلامتی برای انسان و سایر موجودات مولکولی و اثرات آنها در سطح ملی و منطقه‌ای می‌باشد. برگزاری سمینارهای و برخی هایی در سنگینه‌ای همچون کنفرانس ریپورتکل کیوتو و آخرا کنفرانس کیتکاک، نشان از اهمیت این موضوع در سطح جهانی و تلاش برای سیاست‌گذاری به کنترل گرمایش جهانی و تغییرات آب و هوایی می‌باشد که رشد گازهای گلخانه‌ای سهم پردازی در این موضوع دارد. از بین گازهای گلخانه‌ای

\[\text{CO}_2 \]

مهم‌ترین آنها می‌باشد. (کربنی و رحمتی، 1389)
آمار موجود در ایران نشان می‌دهد که سرانه انتشار CO_2 از 6/74 کیلوگرم در سال 1376 به 0/67 کیلوگرم در سال 1384 رسیده است که بخش 11.1 برابر شده است. سرانه کشورهای OECD درصد 7/8 تن و هند حدود 10/7 می‌باشد. مقایسه با سایر کشورها، نیز ایران 15/134\(\text{CO}_2\) درجهای را تولید می‌کند. در حالی که در سال 2005 در ایران 331/6 میلیون تن تولید شده، در فرانسه\(7/2\)که جنوبی/48 و مالزی 7/4 میلیون تن در داراییان می‌باشد. (نفری و پخشی زاده، 1389)\(\text{CO}_2\) اکسید کربن تولید شده است و نشان از تولید بالایی OECD\(\text{CO}_2\) دارد.

جدول 1: میزان انتشار گازهای آلاینده و گلخانه‌ای از اکل بخش انرژی کشور را می‌توان با سال‌های 1366 1375 1380 انتشار گازهای آلاینده و گلخانه‌ای خصوصاً CO_2 از این سال افزایش چشمگیری داشته است. میزان انتشار CO_2 از سال 1366 0/7 میلیون کم در سال 0/6 رسیده است.

سال/کاز	N\(\text{O}_2\)	CH\(\text{4}\)	CO\(\text{2}\)	SPM	CO	SO\(\text{2}\)	SO\(\text{3}\)	NOX						
1336	0	0	0	1/6	0	0	0	0	216/158	310/158	136/158	0/1565	24/2451	2/2792
1325	0	0	0	1/6	0	0	0	0	216/158	310/158	136/158	0/1565	24/2451	2/2792
1315	0	0	0	1/6	0	0	0	0	216/158	310/158	136/158	0/1565	24/2451	2/2792
1305	0	0	0	1/6	0	0	0	0	216/158	310/158	136/158	0/1565	24/2451	2/2792
1295	0	0	0	1/6	0	0	0	0	216/158	310/158	136/158	0/1565	24/2451	2/2792
1285	0	0	0	1/6	0	0	0	0	216/158	310/158	136/158	0/1565	24/2451	2/2792
ماخذتارزانه‌ی سال ۱۳۸۲، ۱۳۸۳ و ۱۳۸۴

در جدول ۳، مقدار و سهم بخش‌های مختلف از انتشار

CO۲ نشان داده شده است. بیشترین سهم مربوط به بخش

خانگی و تجاری می‌باشد و بخش بیرونگاهی رتبه دوم را در انتشار CO۲ در این سال داشته است.

جدول ۳: مقدار و سهم بخش‌های مختلف از انتشار

<table>
<thead>
<tr>
<th>گاز مذاب</th>
<th>بنزین</th>
<th>نفت سفید</th>
<th>نفت گاز</th>
<th>نفت کره</th>
<th>گاز طبیعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۰۰۵۸۱۱۲۴۵</td>
<td>۵۴۵۶۰۷۸۴</td>
<td>۱۹۲۴۴۷۸۴</td>
<td>۲۲۴۴۸۷۴۳</td>
<td>۳۹۷۱۸۳</td>
<td>۲۳۵۳۴۲۹۵</td>
</tr>
</tbody>
</table>

محاسبات ناپایدار سال ۱۳۸۶
فصلنامه علوم اقتصادی (سال سوم، شماره 12، پاییز 1386)

در جدول ۲، مقدار و سهم حمایه انرژی از انتشار CO۲ در سال ۱۳۸۶ تعیین شده است.

جدول ۲: مقدار و سهم باذبی متغیر در انتشار CO۲ در سال ۱۳۸۶ متغیر

<table>
<thead>
<tr>
<th>باذب</th>
<th>منبع</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظ</td>
<td>بنا</td>
<td>۸۰۱۱۴۵</td>
</tr>
<tr>
<td>علی</td>
<td>نسبی</td>
<td>۱/۴۵</td>
</tr>
</tbody>
</table>

ماحدارانه انرژی سال ۱۳۸۶ به هزینه‌های اجتماعی در سال ۱۳۸۶ براساس مطالعه یا نک چهاروی و سیستم محسوب به وسیله بررسی قیمت‌های ۱۳۸۱، میلیارد ریال بهره است که ۴۶۱۶ میلیارد ریال این مربوط به باذبی به‌ویژه انرژی بوده است که این موضوع در جدول ۳ نشان داده شده است.

جدول ۳: هزینه‌های اجتماعی باذبی های مصرف کننده انرژی در سال ۱۳۸۶ براساس قیمت‌های سال ۱۳۸۱ (میلیارد ریال)

<table>
<thead>
<tr>
<th>باذب</th>
<th>نکه/گاز</th>
<th>خانگی، تجاری و عمومی</th>
<th>صنعتی</th>
<th>جهل و نقل</th>
<th>کشاورزی</th>
<th>پالاوشک‌ها</th>
<th>نیروگاه‌ها</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>نکه</td>
<td>N۲O</td>
<td>۱۴۷۲۰</td>
<td>۵۴۵</td>
<td>۲۱۱۷</td>
<td>۶۴۵</td>
<td>۳۴</td>
<td>۲۴</td>
<td>۸۷۱</td>
</tr>
<tr>
<td>CH۴</td>
<td>۱۳۷۴۹</td>
<td>۱۱۸۷</td>
<td>۶۵۳</td>
<td>۵۱۱</td>
<td>۳۴</td>
<td>۷۵۲</td>
<td>۹۹۴</td>
<td>۸۸۰</td>
</tr>
<tr>
<td>CO۲</td>
<td>۴۱۵۶۴</td>
<td>۶۵۴</td>
<td>۸۴۱۹</td>
<td>۸۹۳۶</td>
<td>۳۴</td>
<td>۷۵۲</td>
<td>۹۹۴</td>
<td>۱۲۵۷</td>
</tr>
<tr>
<td>SPM</td>
<td>۳۳۲۲</td>
<td>۶۵۴</td>
<td>۸۴۱۹</td>
<td>۸۹۳۶</td>
<td>۳۴</td>
<td>۷۵۲</td>
<td>۹۹۴</td>
<td>۱۲۵۷</td>
</tr>
<tr>
<td>CO</td>
<td>۱۸۱۲</td>
<td>۶۵۴</td>
<td>۸۴۱۹</td>
<td>۸۹۳۶</td>
<td>۳۴</td>
<td>۷۵۲</td>
<td>۹۹۴</td>
<td>۱۲۵۷</td>
</tr>
<tr>
<td>SO۲</td>
<td>۸۸۰</td>
<td>۶۵۴</td>
<td>۸۴۱۹</td>
<td>۸۹۳۶</td>
<td>۳۴</td>
<td>۷۵۲</td>
<td>۹۹۴</td>
<td>۱۲۵۷</td>
</tr>
<tr>
<td>NOX</td>
<td>۳۳۲۲</td>
<td>۶۵۴</td>
<td>۸۴۱۹</td>
<td>۸۹۳۶</td>
<td>۳۴</td>
<td>۷۵۲</td>
<td>۹۹۴</td>
<td>۱۲۵۷</td>
</tr>
<tr>
<td>جمع</td>
<td>۳۳۰</td>
<td>۶۵۴</td>
<td>۸۴۱۹</td>
<td>۸۹۳۶</td>
<td>۳۴</td>
<td>۷۵۲</td>
<td>۹۹۴</td>
<td>۱۲۵۷</td>
</tr>
</tbody>
</table>

0 ارقام در دسترس نمی‌باشد.

ماحدارانه انرژی سال ۱۳۸۶

رقم ناجی است.
مقاله علمی اقتصادی (سال هفتم، شماره ۱۲، پاییز ۱۳۸۹)

بنابراین میزان انتشار CO\(_2\) ورشد آن در ایران به خصوص در بخش نیروگاهی رقم قابل توجهی است که با این سیاست‌گذاری جهت کنترل رشد آن اقتصاد شود.

بر این اساس می‌توان گفت یکی از سهولت‌های مطرح در ادیات اقتصادی هم‌هستی این بوده است، که آیا می‌توان در کنار رشد اقتصادی که با رشد مصرف انرژی همراه می‌باشد، از الکتریزی لیزی نجات می‌می‌گیرد؟ به عبارت دیگر آیا می‌توان شاهد توسعه پایدار بود؟ با تجزیه عوامل موثر بر انتشار آن‌ها در بخش نیروگاهی کشور پرداخته.

در این راستا، مقاله حاضر به بررسی و شناسایی عوامل موثر بر انتشار \(CO\(_2\)\) از بخش نیروگاهی کشور پرداخته است.

لزوم ذکر است که بررسی‌های انجام‌شده فقط نیروگاه‌های بخاری، گازی و سیکل ترکب‌زیده رادر بر می‌گیرد و با توجه به اینکه داده‌های آماری مربوط به انتشار \(CO\(_2\)\) به تفکیک نیروگاه‌ها و مصرف انرژی بر حسب نوع سوخت آن نیروگاه‌های مرآب در سال‌های ۱۳۸۴ و ۱۳۸۷، با طبقه‌بندی متفاوتی در تراز نامه انرژی ارائه شده اند، لذا مشاهده می‌شود که محاسبات مربوط به تجزیه انرژی انتشار \(CO\(_2\)\) به دوره ۱۳۸۵-۱۳۸۰-۱۳۸۷ انجام یافته است.

اختلاف با فکرنة است.

با توجه به مشکلات مطرح شده برای پاسخ‌گویی به سوال‌های فو تا، ساختار مقاله به صورت زیر شکل گرفته است. در ادامه به ادیات موضوع (پیشینه تحقیق) پرداخته شده، سپس مدل و روش تحقیق ارائه‌گردیده و پس از تجزیه و تحلیل اطلاعات و نتایج حاصل از محاسبات مدل به نتیجه‌گیری گیری و ارائه پیشنهاد‌ها پرداخته شده است.

۲-ادیات موضوع (پیشینه تحقیق):

مطالعات مربوط به مطالعه انتشار \(CO\(_2\)\) از روش تجزیه عوامل در جهان نسبتاً گسترده می‌باشد. مطالعات متعددی در مورد کشورهای اروپایی، آسیایی، آفریقایی و آمریکایی انجام شده است. این مطالعات در سطح کل کشور، بین کشوری، بین‌کشوری اقتصادی و بین‌کشوری اقتصادی و صنعت‌های اقتصادی و صنایع خاص صورت گرفته است. مورودی (ANG,ZHANG,1999,297-305) بر مطالعات انجام شده در مقااله آنگ و رازک ۱ ارائه اساس (۱۹۹۹) روش‌های تجزیه عوامل به دو دسته تقسیم می‌شوند:

1.Ang Bw,Zhang FQ
فصلنامه علوم اقتصادی (سال سوم، شماره 12، پاییز 1389)

1- تحلیل تجزیه ساختاری (SDA)
2- تحلیل تجزیه شاخص (IDA)

بر مبنای چندول داده- سیستم و به داده‌های زیادی نیاز دارد. به دلیل اینکه جدول داده SDA هر ساله در کشورها تهیه نمی‌شود، در کشورهایی که این جدول برای دوره‌های نزدیک تشكیل نمی‌شود، قابل استفاده نمی‌باشد. برای SDA این است که به داده‌های کمتری نیاز دارد و برای هر سال می‌توان شاخص‌های هوش مزیت‌هایی که دارد. استفاده از SDA مربوط را تهیه کننده نباید. نابرابری در مطالعات انجام شده از روش IDA بیشتر استفاده شده است. هر جنبه روش IDA به دلیل در نظر گرفتن وابستگی‌های مستقیم و غیرمستقیم همه بخش‌های اقتصادی از دقت بیشتری برخوردار است.

روش IDA به دو روش LMDI و AMDI انجام می‌گیرد. از نمونه‌هایی که اخیراً در مورد تجزیه عوامل مؤثر بر انتشار CO₂ در کشورهای مختلف بحث گرفته هستند می‌توان به موارد زیر اشاره کرد: هنرمندی، سوگنگ هون و سوگنگ جون ۵، روش SDA به بررسی عوامل مؤثر بر انتشار CO₂ در مطالعات گردیده که جویی برداشته‌اند. در این مطالعات اثر رشد اقتصادی، شدت انرژی و اجزای قابل‌توجه‌های به روش CO₂ در دوره‌های مختلف با بکارگیری مقایسه بهره‌مند است.

تاکنون، اسکی و اکسیستاسی ۶ با روش LMDI، به عوامل مؤثر بر انتشار CO₂ در سطح بخش کشاورزی، به عنوان روش LMDI شناخته شده‌اند. LMDI و AMDI روش‌هایی هستند که اثرات تغییرات ساختاری را در انتشار با هم‌تیزی می‌دانند ولی اثر محسوسی و شدت انرژی را در انتشار CO₂ در کشورهای مختلف با بهبود تلقی می‌نماید.

(نیکی و بخشی زاده، 1389، 15-12)

شایسته است که روش اقتصادی برگریژن اثر را بر انتشار CO₂ در همه بخش‌های اقتصادی داشته است و کارایی مصرف انرژی و تغییر سوخت در بخش بخر و نقش و قسمت باعث کاهش روند انتشار CO₂ شده است. شدت انرژی در می‌گذارد مطالعه تغییرات زیادی داشته است ولی اثر محسوسی کاهش CO₂ در بخش کشاورزی نداشته است. (نیکی و بخشی زاده، 1389، 15-12)

هاتزیگئیوری، پولندریژ و هارالیمپولوس ۷، در تحقیقی که به بهره‌وری و انتشار CO₂ انتشار تجزیه و تحلیل کرده‌اند، روش تحلیل آن CO₂ انتشار به روش LMDI و AMDI استفاده می‌کرده‌اند. در این مقاله، اثر تجزیه کرده‌اند و اثر درآمدها را به کمترین

۱. Structural Decomposition
۲. Index Decomposition
۳. Arithmetic MeahDivisia Index
۴. Logarithmic MeahDivisia Index
۵. Hea-jin , Seung-Hoon , Seung-Jun
۶. Tunc,Asik,Akbostanci
۷. Shymal Paul,Bhattacharya
۸. Hatzigeorgiou , Polatidis , Haralambopoulas
فصلنامه علوم اقتصادی (سال سوم، شماره ۱۲، پاییز ۱۳۸۹)

۱۰ عامل در رشد CO۲ دانستم‌دان و اثر شدت انرژی را عامل کاهش CO۲ در دوره مورد بررسی دانستم‌دان. (نظری و بخشی راده، ۱۳۸۹، ص ص-۱۵۰)

زالک، مونیک و سوئیک (۱۹۹۸) در کشور چین مطالعه نموده‌اند مطالعه آنها نشن داده است که علت‌های اقتصادی اثر مهم در رشد CO۲ و تغییرات ساختمانی کوچک بوده است. البته اثر هر کدام از عوامل در بخش‌های مختلف متغیر بوده است. (۱۳۸۷، صص۴۷-۲۹۹)

و ۲ عضوی کنندگان انتشار CO۲ را در سال‌های ۱۹۷۰-۲۰۰۰ در برخی مطالعات نموده‌اند. مطالعه ون در بخش مسافرت‌ها اهمیت زیادی داشت‌اند. (نظری و بخشی زاده، ۱۳۸۹، ص ص-۱۵۰)

شکیفی و همکاران (۱۳۸۷) با استفاده از تکنیک تجزیه ی فیشر و خربزی‌پزی، شدت انرژی در صنایع نانو بهره‌گیری‌های این صنایع را افزایش داده و اثر این افزایش بهبود یافت. در تغییرات اثر کل شدت انرژی داشته و اثر شدت (شدت انرژی) سه‌گانه پیش‌تر در تغییرات اثر کل داشته است.

در بیشتر صنایع در سال‌های مختلف اثر شدیدی در جهت کاهش شدت انرژی حکمران و اثر ساختمان سه‌گانه ضریبی در کاهش شدت انرژی داشته است. یکی از این اثرات نتایج مطالعه‌ای که داده شده بود. که عوامل مورد بر اثر شدتی ملایم بیشتر قرار، اهمیت حالت های نزدیکی، ابعاد و حالت های نزدیکی، نوزادی در کارایی انرژی و مدیریت‌های انرژی در نظر گرفته شد. اثر شدتی (شدت انرژی) بتواند شناسنده منصفانه نزدیکی در این صنایع را کاهش داد و در صصرف انرژی صرف‌جویی کرد.

محسن نظری و محمد بخشی (۱۳۸۸) به تجربه عوامل موثر بر انتشار۲۰۳ در صنایع ایران بردخته‌اند. در این مطالعه با استفاده از روش تجربه عوامل انتشار۲۰۳ به بررسی عوامل موثر بر انتشار۲۰۳ مطالعه می‌گردد. انتشار۲۰۳ شدت انرژی و ترکیب سوخت و اثر باقی مانده بردخته‌شده است. بلای اساس نشان داده‌اند که تی مدل تحقیق

۱. Zhang , Mu, Ning, Song
۲. Won
برای بررسی عوامل مؤثر بر انتشار CO\(_2\) در نیروگاه‌های ایران، روش تجزیه عوامل بکار گرفته شده است.

در این مدل انتشار CO\(_2\) از بخش نیروگاهی از طریق اندازه گیری تغییرات ۵ فاکتور مختلف مطالعه می‌شود. این ۵ عامل شامل فعالیت نیروگاهی کل (تأثیر فعالیت - اثر تولید)، ترکیب فعالیت نیروگاهی (تأثیر ساختار)، شدت انرژی منطقه ای (تأثیر شدت انرژی)، ترکیب انرژی منطقه ای (تأثیر ترکیب سوخت) و فاکتور انتشار CO\(_2\) (اثر فاکتور انشار) (Zhang, ۲۰۰۵).

مدل به صورت زیر نوشته می‌شود:

\[
C = \sum_{ij} C_{ij} = \sum_{ij} Q_i \frac{E_i}{Q_i} \cdot E_{ij} \cdot C_{ij} = \sum_{ij} Q S_i I_j M_i U_i
\]

در شرایطی که C انتشار گاز CO\(_2\) ناشی از نیروگاه‌های Hام و Cij انتشار ناشی از سوخت در بخش نیروگاه‌های i است.

برای طراحی و محاسبه‌ی مدل داده‌های زیر مورد نیاز است:

\(E_i = \sum_{ij} E_{ij} \)

برای محاسبه‌ی EF مصرف سوخت قطعه‌ی iام در بخش نیروگاه‌های آلم.

\(E_{ij} = \frac{E_{ij}}{Q_i} \)

در شرایطی که EF مصرف سوخت نیروگاه Qام است.

\(E_{ij} = \sum_{ij} E_{ij} \)

مصروف سوخت Qام در کل نیروگاه‌ها است.

1. Out Put Effect
2. Structural Effect
3. Energy intesity Effect
4. Fuel mix Effect
فصلنامه علوم اقتصادی (سال سوم، شماره ۱۲، پاییز ۱۳۸۹)

در این حالت همان فعالیت نیروگاهی کل (اثر تولیدی) می‌باشد و

\[S_i = \frac{Q}{Q} \]

\[M_{ij} = \frac{E_{ij}}{E_i} \]

شرت انتزی منطقه ای (تأیید شدت انتزی) است و شدت انرژی (اثر ترکیب سوخت) است و

\[I_i = \frac{E_i}{Q} \]

\[U_{ij} = \frac{C_{ij}}{E_{ij}} \]

بهطوری که این شدت به انواع نیروگاه‌ها است:

\[i = \begin{cases} 1 \\ 2 \\ 3 \end{cases} \]

\[j = \begin{cases} 1 \\ 2 \\ 3 \end{cases} \]

\[i = 1 \text{ (غازهای), } j = 2 \text{ (گازهای)، } i = 3 \text{ (سیلک ترکیبی)} \]

و این شدت به انواع سوخت نیروگاه‌های گازی این گونه تعریف می‌کنم:

\[j = 1 \text{ (گازهای نفتی), } j = 2 \text{ (گازهای طبیعی), } j = 3 \text{ (گازهای غیرنفتی)} \]

مقدار تغییر در انتشار CO۲ بین دو دره پایه (t) و دو دره یکی (t = Q) برای است با:

\[D_{tot} = \frac{C_T}{C_0} = D_{act}, D_{str}, D_{int}, D_{mix}, D_{emf} \]

\[\Delta C_{tot} = C^T - C^0 = \Delta C_{act} + \Delta C_{str} + \Delta C_{int} + \Delta C_{mix} + \Delta C_{emf} \]

نتایج شدت سال، شدت سال نهایی اثر مربوط به فعالیت کل (تولیدی) سال تولیدی، ترکیب انرژی (سوخت) و فاکتور انتشار هستند. فاکتور انتشار هستند.

\[\text{را در سال های مورد بررسی نسبت به سال پایه نشان می‌دهد.} \]
فصلنامه علوم اقتصادی (سال سوم، شماره 23، پاییز 1389)

از این رابطه می توان مشخص کرد که سهم هر کدام از اثرات در میزان انتشار آلاینده ها چه مقدار می باشد.

رابطه (3) مشخص کنده تغییرات میزان انتشار CO$_2$ در سال مورد بررسی نسبت به سال پایه است که اگر مثبت باشد میزان انتشار آلاینده ها افزایش یافته و اگر منفی باشد افزایش میزان انتشار آلاینده ها کم شده است و از این رابطه هم می توان سهم هر کدام از اثرات در میزان انتشار آلاینده ها مشخص کرد.

LMDI formulae for decomposing change in energy-related CO_2 emission from industry

$\text{IDA identity} \quad C = \sum_{i} c_{ij} = \sum_{ij} Q_i E_i E_{ij} = \sum_{ij} Q S_{ij} I M_{ij} U_{ij}$

$\text{Multiplicative decomposition} \quad \text{Additive decomposition}$

$\text{Change schemes} \quad D_{tot} = C^T / C^0 = D_{act} D_{str} D_{int} D_{mix} D_{emf} \Delta C_{tot}$

$\Delta C_{tot} = C^T - C^0 = \Delta C_{act} + \Delta C_{str} + \Delta C_{int} + \Delta C_{mix} \Delta C_{emf}$

$LMDI$ formule D_{act}

$= \exp \left(\sum_{ij} \frac{(C^T_{ij} - C^0_{ij})/(\text{Ln} C^T_{ij} - \text{Ln} C^0_{ij})}{(C^T - C^0)/(\text{Ln} C^T - \text{Ln} C^0)} \text{Ln} \left(\frac{Q^T}{Q^0} \right) \right) \Delta C_{act}$

$= \sum_{ij} \frac{C^T_{ij} - C^0_{ij}}{\text{Ln} C^T_{ij} - \text{Ln} C^0_{ij}} \text{Ln} \left(\frac{Q^T}{Q^0} \right)$

D_{str}

$= \exp \left(\sum_{ij} \frac{(C^T_{ij} - C^0_{ij})/(\text{Ln} C^T_{ij} - \text{Ln} C^0_{ij})}{(C^T - C^0)/(\text{Ln} C^T - \text{Ln} C^0)} \text{Ln} \left(\frac{s^T_i}{s^0_i} \right) \right) \Delta C_{str}$

$= \sum_{ij} \frac{C^T_{ij} - C^0_{ij}}{\text{Ln} C^T_{ij} - \text{Ln} C^0_{ij}} \text{Ln} \left(\frac{s^T_i}{s^0_i} \right)$
فصلنامه علوم اقتصادی (سال سوم، شماره ۱۲، پاییز ۱۳۸۹)

\[D_{\text{int}} = \exp \left(\sum_{ij} \frac{(C^T_i - C^0_i) / (\ln C^T_{ij} - \ln C^0_{ij})}{(C^T - C^0) / (\ln C^T - \ln C^0)} \ln \left(\frac{I^T}{I^0} \right) \right) \Delta C_{\text{int}} \]

\[= \sum_{ij} \frac{C^T_i - C^0_i}{\ln C^T_{ij} - \ln C^0_{ij}} \ln \left(\frac{I^T}{I^0} \right) \]

\[D_{\text{mix}} = \exp \left(\sum_{ij} \frac{(C^T_{ij} - C^0_{ij}) / (\ln C^T_{ij} - \ln C^0_{ij})}{(C^T - C^0) / (\ln C^T - \ln C^0)} \ln \left(\frac{M^T_{ij}}{M^0_{ij}} \right) \right) \Delta C_{\text{mix}} \]

\[= \sum_{ij} \frac{C^T_{ij} - C^0_{ij}}{\ln C^T_{ij} - \ln C^0_{ij}} \ln \left(\frac{M^T_{ij}}{M^0_{ij}} \right) \]

\[D_{\text{emf}} = \exp \left(\sum_{ij} \frac{(C^T_i - C^0_i) / (\ln C^T_{ij} - \ln C^0_{ij})}{(C^T - C^0) / (\ln C^T - \ln C^0)} \ln \left(\frac{U^T_{ij}}{U^0_{ij}} \right) \right) \Delta C_{\text{emf}} \]

\[= \sum_{ij} \frac{C^T_i - C^0_i}{\ln C^T_{ij} - \ln C^0_{ij}} \ln \left(\frac{U^T_{ij}}{U^0_{ij}} \right) \]

جدول فوق فرمول LMDI برای تجزیه عوامل انتشار CO\textsubscript{2}، از صنعت CO\textsubscript{2}ا به صورت LMDI مورد استفاده قرار گرفته است.

http://www.elsevier.com/locate/enpol

ماتریس اثر تولیدی نشان از اثر تولید در انتشار بیشتر CO\textsubscript{2} دارد. این اثر مربوط به کاهش مقدار انتشار بیشتر CO\textsubscript{2} به صورت LMDI می‌باشد. اثر تغییر میزان تولید نیروگاه‌ها به بوده است. (اثر فعالیت کل).

اثر تغییر میزان تولید نیروگاه‌ها به بوده است. اثر تغییر ساختار و نوع نیروگاه‌ها به داشتن نشان از این دارد که تغییر ساختار (انواع نیروگاه‌ها) به شکلی بوده است که نیروگاه‌های تولید کننده CO\textsubscript{2} در دارای افزایش سهم شده اند‌.
فصلنامه علوم اقتصادی (سال سوم، شماره 23، پاییز 1388)
جدول ۲: انتشار \(\text{CO}_2 \) از سوخت های مصرفی بخش نیروگاهی (میلیون تن)

<table>
<thead>
<tr>
<th>سال</th>
<th>بخاری</th>
<th>گازی</th>
<th>سیکل ترکیبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۸۰</td>
<td>۶۱۸/۷</td>
<td>۶۱۵/۹</td>
<td>۵۱۵/۷</td>
</tr>
<tr>
<td>۱۳۸۱</td>
<td>۵۸۶/۸</td>
<td>۷۹۲/۶</td>
<td>۴۷۸/۸</td>
</tr>
<tr>
<td>۱۳۸۲</td>
<td>۵۹۴/۴</td>
<td>۷۶۷</td>
<td>۴۶۷</td>
</tr>
<tr>
<td>۱۳۸۳</td>
<td>۵۹۶/۲</td>
<td>۷۱۶</td>
<td>۴۷۸/۸</td>
</tr>
<tr>
<td>۱۳۸۵</td>
<td>۶۲۸/۳</td>
<td>۷۸۴/۷</td>
<td>۴۷۸/۸</td>
</tr>
</tbody>
</table>

پژوهش‌های که در جدول (۲) مشاهده می‌شود نیروگاه‌های ترکیبی نسبت به دیگر نیروگاه‌ها شاخص انتشار کمتری دارند. در حالی که نیروگاه‌های گازی بیشترین شاخص انتشار را به خود اختصاص داده، نیروگاه‌های بخاری در مقایسه با نیروگاه‌های سیکل ترکیبی شاخص انتشار بالاتری را دارا می‌باشند. این مقایسه نشان می‌دهد که احداث نیروگاه‌های سیکل ترکیبی می‌تواند سبب کاهش انتشار \(\text{CO}_2 \) نسبت به دیگر نیروگاه‌ها شود.

می‌توان گفت: گفتگوی افزایش تدریجی شاخص انتشار \(\text{CO}_2 \) در نیروگاه‌های سیکل ترکیبی، افزایش استفاده از گاز‌ویل نسبت به گاز طبيعي است. نیروگاه‌های بخاری از سوخت‌های قابلی نفت کوره، گازویل و گاز طبيعي استفاده می‌کنند. با توجه به ضریب انتشار بالایی نفت کوره و گازویل، شاخص انتشار این نیروگاه نیز بالاتر است.

ماخذ: ترالانده از انتزی
فصلنامه علوم اقتصادی (سال سوم، شماره 12، پاییز 1389)

<table>
<thead>
<tr>
<th>سال</th>
<th>نفت کوره</th>
<th>نفت گاز طبیعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1380</td>
<td>20426</td>
<td>4284</td>
</tr>
<tr>
<td>1381</td>
<td>18587</td>
<td>4258</td>
</tr>
<tr>
<td>1382</td>
<td>17274</td>
<td>3791</td>
</tr>
<tr>
<td>1383</td>
<td>17801</td>
<td>56937</td>
</tr>
<tr>
<td>1384</td>
<td>18837</td>
<td>4284</td>
</tr>
<tr>
<td>1385</td>
<td>22594</td>
<td>13448</td>
</tr>
<tr>
<td>1386</td>
<td>18867</td>
<td>4258</td>
</tr>
<tr>
<td>1387</td>
<td>20246</td>
<td>1380</td>
</tr>
</tbody>
</table>

مقدمه ترکیبی بررسی

جدول (1) مشاهده می‌شود انتشار CO2 ناشی از گاز طبیعی همواره رو به رشد است. در جدول (2) مشاهده می‌شود انتشار CO2 ناشی از یک بخش نیروگاهی در سال‌های 1385-1388 به صورت سالانه کاهش یافته است.

CO2

هنجاره ی انتشار و شاخه انتشار 2

مقدار انتشار CO2 از یک بخش نیروگاهی (سیکل بخاری، گازی، بخاری) از 16744/1 میلیون تن در سال 1380 به 18982/2 میلیون تن در سال 1385 افزایش یافته است. یعنی رشد متوسطی معادل با 1/5 درصد در سال داشته است. جدول 8 میزان تاثیر عوامل مختلف را بر تغییر انتشار CO2 در سال‌های 1380 تا 1385 برحسب رسید می‌دهد.

جدول 8: تجزیه عوامل موثر بر رشد انتشار CO2 از یک بخش نیروگاهی
<table>
<thead>
<tr>
<th>سال/اثر</th>
<th>اثر تولیدی</th>
<th>اثر ساختاری</th>
<th>اثر ترکیب سوخت</th>
</tr>
</thead>
<tbody>
<tr>
<td>81/1388</td>
<td>1/0568</td>
<td>7/103</td>
<td>1/015</td>
</tr>
<tr>
<td>82/1389</td>
<td>1/0742</td>
<td>1/097</td>
<td>1/071</td>
</tr>
<tr>
<td>83/1390</td>
<td>0/773</td>
<td>0/493</td>
<td>0/627</td>
</tr>
<tr>
<td>84/1391</td>
<td>0/412</td>
<td>0/273</td>
<td>0/507</td>
</tr>
<tr>
<td>85/1392</td>
<td>0/136</td>
<td>0/185</td>
<td>0/143</td>
</tr>
</tbody>
</table>

ملاحظه: تحقیق

برای مقایسه و تحلیل دقیق تغییرات انتشار، در جدول (8) نتایج به شکل نشانیده شده است (سال 1380-1381). همان‌طور که جدول 8 نشان می‌دهد، اثر تولیدی به جز دهه 84-83، همواره با تاثیر منفی بر افزایش انتشار CO₂ بخش نیروگاهی داشته است (پرگانی و هم‌است). این موضوع که این اثر رشد تولید برای کل دوره ی بررسی شده تا بپرس از رشد انتشار CO₂ بخش نیروگاهی دارد.

شدت سوخت (انرژی) همان‌طور که در جدول 8 مشاهده می‌شود در سال های مورد بررسی اثر منفی بر روی داشته است و همچنین مقادیر گوگهک تر از واحدهشان دهده افزایش در کارایی تولید برق است.

اثر ساختار تولید هر همراه با نوسان هایی بوده، بطوری که در دوره‌های 81 و 82 افزایش در کارایی تولید برق و در دوره‌های 83-84 و 85 کاهش بوده است که این امر باید کننده آن است که این اثر انتشار CO₂ را کاهش می‌دهد.

به نظر می‌رسد که تغییر در ترکیب انواع سوخت، بطور مثال استفاده از نفت گاز طبیعی در نیروگاه‌های گازی و سیستم ترکیبی نتوانسته باشد اثر انتشار CO₂ را کاهش داشته است.

امرس نفت گاز‌ و گاز طبیعی در نیروگاه‌های سیستم ترکیبی به ترتیب رشدی در سال‌های 1382 و 1383 می‌باشد و برای نیروگاه‌های گازی به ترتیب رشدی متوسط 73/1 و 12/1 درصد داشته است. (نقشه‌نامه انرژی)
نتایج گیری و پیشنهادهای:

محیط زیست خدماتی همچون حمایت از زندگی، عرضه منابع طبیعی و عرضه خدمات رفاهی برای انسان‌ها ایجاد می‌نماید. تا پیوند به اینکه محیط زیست محیط مشترک همه انسان‌هاست، این امر از جهت حفظ آن تلاش شود.

یکی از مهم‌ترین عوامل مؤثر در تخریب محیط زیست، انتشار CO2 می‌باشد که به دلیل آثار نامطلوب آن بر تغییرات آب و هوایی، گرمایش جهانی و تلاش جهانی برای کاهش انتشار آن هر روز افزایش می‌یابد.

در این پژوهش با استفاده از روش تجزیه عوامل، اندازه‌گیری CO2 در نیروگاه‌ها به صورت اثر تولیدی، ساختاری، شدت انرژی و ترکیب سوخت تجزیه شد و با استفاده از داده‌های ترازاتنه انرژی بنا بر فوآرد برق در دوره‌های مختلف 1385-1380 انجام شده است.

نتایج حاصل از محاسبه نشان می‌دهد که اثر تولید مهیب‌ترین عامل در انتشار CO2 در نیروگاه‌هایی کشور در طی دوره برق‌رسی می‌باشد.

کاهش انتشار CO2 از طریق اثر تولیدی، بحث انگیز و معمولاً با مخالفتهای زیادی رو به رو می‌شود. به این معنی است که باید تولید کاهش‌باید به مشکلات متعددی را به دنبال خود دارد. همچنین تاکید تجزیه‌ی انتشار بخش نیروگاهی نشان می‌دهد که همچنین اثر ساختاری و ترکیب سوخت می‌تواند سبب افزایش انتشار CO2 شود.

یکی از راه‌های کاهش CO2 بدن کاستن است. تولید بهبود شدت انرژی در بخش نیروگاهی کشور می‌باشد. اگر شاهد بهره‌وری انرژی (مکوس شدت انرژی) را افزایش داده می‌توان بدون کاستن از سطح تولید به کاهش رسید انتشار CO2.
در حد استاندارد هوای پاک بیش‌هایا و اعمال مالیات بر کربن و انزیو و همچنین ترویج و توسعه فناوری‌های بزرگ مقياس تولید نیرو (با سوخت پاک) از جمله کارهایی است که دولت می‌تواند برای کاهش انتشار CO2 بخش نیروگاهی انجام دهد.
فصلنامه علوم اقتصادی (سال سوم، شماره 12، پاییز 1389)

مطلب:

1- هرمی، محمد حسین، بررسی میزان انتشار هیدروکربن‌های آزوتاتیک و آلاینده‌های NO, SO2 در پالایشگاه کرمانشاه، تعیین سهم برخی از عوامل انتشار و ارائه راهکارهای بهینه‌تری، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، 1386.

2- بور، رجب، مهناز بنسبة اثرات زیست محیطی نیوگوا فسفیلی بعث از نظر آلودگی هوا، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، 1379-1373.

3- حاجیی، امیر، تعیین شاخص های توسعه پایدار ارزی کشور در یک خشک تولید و توسعی ارزی، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، 1384.

4- حسینی، سید عمآزادگی، خطر بیماری در ایران، مجله تازه های انرژی، شماره 16، خرداد 1389.

5- خالصی، دوست عبده، مرور اسنادی بررسی اثرات زیست محیطی کلخانه‌ای توسط زیست محیطی ایران در اختیار در نیوگواهای حرارتی.

6- رضایی، محمد ابراهیم، پیگیری و بررسی اثرات زیست محیطی نیوگوا حرارتی، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، 1377-1379.

7- شاه حسینی، مهدی، مدلگی بررسی اثرات زیست محیطی نیوگوا حرارتی از نظر پیش‌بینی، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، 1389.

8- کریمی، مهدی، راجع به سیاست‌های محیطی بخش انرژی، IEA، 1389.

9- نظری، محسن و بخش، زاده محمد، تجزیه و عوامل موثر بر انتشار CO2 در صنایع ایران، در دست چاپ.

10- وزارت نیرو، "ترزاژم انرژی" سال‌های مختلف

15- Ilyoung oh, waltherwehrmeyer, YacobMulugetta (in press), Decomposition analysis and Mitigation strategies of CO₂ emission from energy consumption in South Korea, energy policy.

22- http://www.elsevier.com/locate/enpol

23- http://www.clean energy.com
Decompositon of co\textsubscript{2} Emissions in Iran
(Case of Power Plant)

Marjan Daman keshide1
Mohsen Nazari2
ElhamSadat Rezaei3

Abstract:
The environmental problems especially climate changes due to significant increase in green
housegases, have been a global problem in last few decades.
Among the green housegases, carbon dioxide (\text{CO\textsubscript{2}}) is the most important.
The average \text{CO\textsubscript{2}} emission is increased from 6.7 kg in 1967(1346) to 7477.7 kg in 2003(1382) and
6881.7 kg in 2007(1386) respectively. It shows that \text{CO\textsubscript{2}} emission rate is 11 times. The social costs for
deterioration of environmental due to consumption of fossil fules in 2007(1386) in Iran for
SPM, \text{CO\textsubscript{2}}, \text{SO\textsubscript{2}}, \text{NO\textsubscript{X}}, is about ۹۷۹۶ Billion Iranian Rials which equals to ۹.۶\% of GDP. The \text{CO\textsubscript{2}}
portion has been ۶۸۸۱.۷ Billion Iranian Rials which is about ۹۷۴ Bilion Iranian Rials was emitted
by power plants. Therefor, the factors that affecting \text{CO\textsubscript{2}} emission, should be studied considering
high rate of \text{CO\textsubscript{2}} production in Iran especially by power plants. In this research by means of
algebraic decomposition methods the observed changes are analyzed in to five different
factors: production effect, structural effect, energy intensity effect and fuel mix effect. This research
has been done for period of ۲۰۰۱-۲۰۰۷ (1380-1385) for the Iranian power plants. The research shows
that output effect was the most effect on increasing \text{CO\textsubscript{2}} emissions. And \text{CO\textsubscript{2}} emissions are possible
to decrease without decrease output if structural and efficiency energy and fuel mix improves.

JEL Classification: Q40, Q41

Key Words: Environment, \text{CO\textsubscript{2}} emissions, Analysis Factors, Powerhouse, Production effect,
Structural effects, Energy intensity

1. Assistan Professor Azad univesity Branch of central Tehran, Email:M.Damankeshide@yahoo.com
2. Tehran Univrtsity Assistant Professor in Economic Email:DM.Nazari@gmail.com,
3. MA in Economic Email:Elham.Rezaii@gmail.com
فصلنامه علوم اقتصادی (سال سوم، شماره 12، پاییز 1389)