| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,553,440 |
| تعداد دریافت فایل اصل مقاله | 56,265,479 |
A dynamic programming approach for solving nonlinear knapsack problems | ||
| Journal of Industrial Engineering International | ||
| مقاله 3، دوره 2، شماره 2، خرداد 2006، صفحه 31-37 اصل مقاله (100.62 K) | ||
| نویسندگان | ||
| E Jahangiri1؛ F Ghassemi-Tari* 2 | ||
| 1Assistant Professor, Islamic Azad University, Science and Research Branch, Tehran, Iran | ||
| 2Associate Professor, Sharif University of Technology, Tehran, Iran | ||
| چکیده | ||
| Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the problems grows rap-idly. In this paper the authors developed a procedure for improving the computational efficiency of the dy-namic programming for solving KNP. They incorporate three routines; the imbedded state, surrogate con-straints, and bounding scheme, in the dynamic programming solution approach and developed an algorithmic routine for solving the KNP. An experimental study for comparing the computational efficiency of the pro-posed approach with the general dynamic programming approach is also presented. | ||
| کلیدواژهها | ||
| Discrete optimization؛ Multiple-choice knapsack؛ Imbedded state؛ Surrogate constraint | ||
|
آمار تعداد مشاهده مقاله: 811 تعداد دریافت فایل اصل مقاله: 764 |
||