مقاومت توان تبیین مدل‌های پارامتریک (اقتصادسنجی) و شبکه عصبی در سنجش میزان ارزش در معرض خطر پرفروشی شرکت‌های سرمایه‌گذاری چهت تعیین پرفروش بهبود در بازار سرمایه ایران

<table>
<thead>
<tr>
<th>غلامرضا زمردیانَ</th>
<th>1</th>
<th>تاریخ دریافت</th>
<th>94/12/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>علی رستمیَ</td>
<td>2</td>
<td>پذیرش</td>
<td>95/01/00</td>
</tr>
<tr>
<td>مهدی کریمی‌زنَ</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

چکیده

در دنبال پیچیده ای که رسیک جز لاینفک سرمایه‌گذاری ها گشته و برای سرمایه‌گذاری در هر جا ایند، می‌باشد. این مطالعه آن را محاسبه نمود و در اختیار سرمایه‌گذار قرار داد تا یک مدل نتیجه بررسی که در مکان مورد نظر سرمایه‌گذاری نماید، با خرید! محاسبه رسیک معنی موفقیت می‌کند. بنابراین برای پاسخ‌گویی به سرمایه‌گذار روش‌های منفی با توجه به نوع داده‌های تخمین زندگی پارامترها مدل‌های تبیین کننده رسیک طراحی و با بررسی وزن خودگشایی از میان این مدل‌ها دو گروه از مدل‌های اقتصاد نسبی و شبکه عصبی در این تحقیق مورد بررسی قرار می‌گردد. تا توانایی دو گروه را در پیش‌بینی ارزش در معرض خطر پرفروشی 21 شرکت های سرمایه‌گذاری در بازار سرمایه ایران مورد سنجش قرار گیرد و مدل برتر معرفی شود.

واژه‌های کلیدی: رسیک، پارامتریک، شبکه عصبی.

1. دکتری و عضو هیات علمی دانشگاه آزاد اسلامی. واحد تهران مرکزی (نویسنده مسئول و طرف مکاتبات): gh.zomorodian@gmail.com
2. استادیار گروه علوم انسانی دانشگاه پایتخت.
3. عضو هیات علمی گروه مدیریت بازاریابی دانشکده مدیریت دانشگاه آزاد اسلامی واحد تهران مرکزی

55
1- مقدمه
در اقتصادهای کوچکی، بارزتری از مالی نقش اساسی در جهت توسه‌های متقابل و پایداری اقتصادی و اجتماعی ایفا می‌کند و به وقوع اروپیک فیشتر (1906) منابع مالی را، در طی زمان، به اقتصاد تزییق می‌نماید و بدون این بارزتری اقتصادی و به تعیین از ان ازاریتی روش امکان‌پذیری نوده، ولی از طرف دیگر دانست "بر پیچیدگی این بارزتری نیز افزوده است. این پیچیدگی ناشی از عواملی چون جهانی، نواری های مالی، پیشرفته‌های تکنولوژیکی، تدوین قوانین و مقررات، مرگ و نیازهای زندگی و سپاه به درد از منفعت است. "پیچیدگی بارزتری مالی، بنابراین قوت و مبارزات از عوامل دیگر باعث شده که دلالا "ریسک در بارزتری مالی افزایش پیدا می‌گردد و ارتقاء پایدار و صحیح بین نظام‌های مالی و قوی‌ترین کشورها که از مهم‌ترین عوامل رشد و توسعه اقتصادی است از بین رود. بنابراین ریسک در بارزتری مالی نقش کلیدی ایفا می‌نماید و شناخت آن باعث می‌شود که تا حدی به‌وافقت آن را ادعاگری نموده و از بین بره و یا تحت کنترل قرار دهیم.

وجود تغییرات در بارازه باعث ایجاد ریسک می‌گردد. برای تعیین نمودن این میزان ریسک در بارزتری مختلف از روش‌های امراری و غیر امراری متقابلی استفاده می‌نمایند تا بتوانند میزان ریسک موجود در بارزتری امکان را مشخص نمایند. هر چند که میزان کارایی این مدل در تعیین میزان ریسک در بارزتری مختلف مالی دنبال گواهگذار است. در نتیجه با توجه به ماهیت ریسک تصمیم گیری در مسائل بارزتری مالی و پرداخت حمله عملیت تعیین سبد بهینه بهرام، جز در فضای عدم قطعیت امکان پذیر نمی‌باشد. بکار یک از روش‌هایی که در حال حاضر از محاسبه‌ی زیادی در بین بازارگان بارزتری مالی برخوردار است، مطالعات انجام شده در بسیاری از بارزتری مالی برای مقایسه‌ی عملکرد فعلی این امکان در معیار را توجه می‌نمایند. ترکیبی (اقتصاد سنتی) و شبکه عصیی (برپستورن) برای برآورد میزان ریسک در بارزتری ایران از طریق روش ارگ در معیاری بررسی قرار گرفت. تا کارکرد ریسک را مدل در تعیین سبد بهینه بهرام در این بارزتری مشخص شده و مدل بهینه ای تعیین گردد که بتواند ریسک موجود در بارزتری مالی کشور را با توجه به ویژگی‌های آن برای یک سبد پرترفی مطلوب پیش نمایند.

2- مبانی نظری و پیشینه تحقیق
2-1 مبانی نظری
از انجایی می‌توان در یک دنباله از مسیران به‌نگیزی می‌بینیم که در نتیجه امکان تعیین میزان عادی‌ترین به‌پیشینه، که این عدد اطلاعی به ریسک که وابسته به عناوین متفاوتی اصلی دارای هر بارزتری تصمیم گیری‌های سرمایه‌گذاری در نظر بگیریم، باردیکه که مینگی کمی و ریسک یک مینگی کمی به‌ااس از سرمایه‌گذاری در نظر بگیریم، باردیکه که مینگی کمی و ریسک یک مینگی کمی به‌ااس
و هدف مدیریت ریسک نیز کمی سازی این کیفیت چه‌چیزی است که جهت کنترل‌آن برای رسیدن به اهداف سازمان و مدیریت بهینه ریسک می‌باشد (موسسه عالی بانکداری ایران، 1385).

در نتیجه مهم‌ترین عامل ایجاد ریسک قرار گرفتن در شرایط عدم اطمینان است. بنا براین با حکم از عدم اطمینان کامل تأثیر به‌سوی عدم اطمینان نسبی این نتایج، ریسک می‌گردد. (پارکر، 1378)

سرمایه‌گذاران به هنگام سرمایه‌گذاری در پروژه‌های مختلف به طور هم‌زمان ریسک و بازده آن پروژه‌ها را به عنوان یکی از عوامل در تخصیص سرمایه‌گذاری می‌دانند. باید بپیماید تشدید محیط‌های سرمایه‌گذاری، سرمایه‌گذاران می‌باشند به همراه بازارها و هم‌دارایی نه‌توانده‌اند. آنها می‌باشند کلیه ارزیابی‌های استیسی و حذف را جهت همبستایی به‌هم‌تدریج ترکیب سرمایه‌گذاری مورد بررسی قرار دهد. بدست آورده ترکیب سرمایه‌گذاری به وضعیت تجربیاتی سرمایه‌گذاری گذاری نسبت به ناخیزندگی سرمایه‌گذاری از ریسک بستگی دارد. درک استراتژی‌های سرمایه‌گذاری قابل تضمین ارزش سرمایه‌گذاری فنی ارزش‌دادن، سرمایه‌گذاری برای محیط‌های مشخص کننده میزان ریسک از طریق ارزش در عرض بخش را مورد ارزیابی فرایند می‌دهیم. به‌طور معمول مدیریت ریسک در ارزیابی ریسک از روابط تاریخی از آن‌ها استفاده می‌کند. آنها این گونه فرض می‌نمایند که ریسک از طریق شاخص‌های دامنی نشأت قرار گرفته و از این روی تاریخ ی می‌توان برای پیش‌بینی تحلیل ریسک در آینده استفاده نمود. ولی باید توجه داشت که براساس اطلاعات انجام شده تا کنون هیچ روش قطعی برای پیش‌بینی تغییرات و تکمیل‌های برای سیستم های تابلت دیده می‌شود که ذرات قابلیت اطمینان ریسک بارای همه بازارها و همچنین برای همه بازارها باشند. با نظر عربی وجود نگاشته‌است. بررسی‌های خاص اشکالات جدی بر هر یک از ریسک‌های مزاحم توجهی است.

از این‌رو در محیط طبیعی برای اولین بار در تاریخ ۱۹۵۲ نتیجه در سال ۱۹۵۵ به صورت مقدماتی بین‌المللی بوده و در صورت فیلتر (۱۹۶۳) هنگامی که می‌باشد اندازه‌ی بر روی مدل برای مسیر لایه می‌باشد "معیار حد اطمینانی" یا "ریسک مورد انتظار" کار می‌کرد، مطرح گردید. اما توسط تئوری الگو‌گیری، ریسک مسیر می‌باشد. ریسک مقایسه‌ی ریسک تا آنجا که هم‌ارایی اهمیت این مسیر را گزارش دارد VaR برای بازارهای اولین بار در دی‌وزگ در حال خاصی می‌باشد خلاصه داده‌های مربوط به ریسک در گزارش‌های سالانه به سه‌ماداران به‌عنوان شاخصی از ریسک بازار ارائه‌نامید. (BrownT, 2005)
1- تخمين های معقول تری از ریسک برای سید دارابی به دلیل از میان برداشتن سپاری ی از مفروضات غیر ضروری آنها می‌نماید.
2- متغیرهای پیازدی از سوی یک درف زمانی کوتاه تطیف به کمک نمونه که این موضوعی می‌تواند به بروز دقتی ریسک نموجب شود.
3- این روش بر عکس روش میانگین - واریانس که به دنبال محاسبه دنباله های منفی (ریسک منفی) باده می‌باشد، روش مطلوب تری است. چرا که کاهش ارزش سبد به پایین تر از محدوده ارزش در معرض خطر را تشکیل می‌دهد.
4- یک سنجش مشترک برای ریسک های مختلف می‌باشد.
5- محدودیت‌های محیط‌شناسی شده بر این روش، بوسیله روش های جدیدی از VaR هم‌اندازه (VaR) که اثر اندازی یا کاهش هر دارابی بر کل ریسک تنویعی را انداده گیری VaR (دی‌VaR) می‌نماید مرتقی می‌گردد.

از معایب این روش می‌توان به:
1- مولفه های مختلف ریسک را با یکدیگر ترکیب نموده و آن را به شکل یک عدد ساده در می‌آورد. (Levy and Sarnat, 1984)
2- به عنوان یک روش آماری می‌باشد همراه با یک خطای باقی اصلی اطمینان بیان می‌گردد. (همان)
3- در فرض این است که شرایط بازار عادی باقی خواهد ماند، در حالی که در واقعیت این اتفاق حاصل نمی‌گردد.
4- خطر ریسک خود نمود بروز دقتی ریسک ارائه نمی‌گردد. در این مقاله ما مهم ترین مزایای معایب مدل ارزش در معرض خطر مطرح شده مهم ترین مزایا و معایب می‌باشد، هر چنین مزایا و معایب دیگری بر این مدل منصور می‌باشد.

1-1- مفهوم و بین آماری VaR

هر چنین مفهوم ارزش در معرض خطر یک مفهوم ساده است و هم مفهومی است که با دشواری های همراه می‌باشد. این اشاره در زمینه سنجش های ریسک مبتنی بر صدک به همراه سنجش های هم چون ریسک مورد انظار و سنجش های ریسک طیفی قرار دارد. و بین کننده زبان های احتمالی است که به یک سرمایه‌گذاری در مدت زمان مشخص و با یک از درجه احتمال معین ممکن است، وارد شود. به عبارت دیگر می‌توان
گفت که X درصد مطمئن هستیم که بیشتر از ٢٪ ریال را در N روز بعد از دست نخواهیم داد. متغیر VaR همان ارزش در معرض ریسک می‌باشد که در بر داده‌ای ن بازیت ن خواهد بود. با استفاده از آن می‌توان در صورتی از تحلیل و قطعیت زیر بهره برد (ALEXANDER, 2008) است. (Harmantzis, 2006).requirement. در واقع VaR به‌عنوان پایین‌ترین حد در نگاه‌ها توجه شده بود (Harmandt). بنابراین برای هر α (0, 1), ارشه در معرض خطر با اطمینان (1-α)/100 به صورت زیاد تعریف می‌گردد.

\[\text{VaR}_\alpha(X) = -q_\alpha(x) \]

این است:

\[q_\alpha(x) = \inf\{x : P(X \leq x) > \alpha\} \]

\[= \sup\{x : p(X < x) \leq \alpha\} \]

از خواص ارزش در معرض خطر می‌توان به موارد زیر اشاره نمود:

- متغیر: می‌توان این که ریسک یک مجموعه دارایی (پرتوپو) می‌باشد از ریسک منفرد ارزای تشکیل دهنده آن کمتر و حاصل مسایل آنها باشد. به این خاصیت ویژگی زیر جمع پذیری نیز گویند.

- نزولی بودن: این خاصیت بدان می‌کند که هر چه میزان عناصر تشکیل دهنده یک مجموعه از مجموعه دیگر بیشتر باشد، دارای میزان ریسک کمتری است.

- همگی منی: این خاصیت توضیح دهنده این موضوع است که اگر انداره سه دارایی با هر ضریبی تغییر نماید، میزان ریسک آن نباید با همین میزان تغییر می‌کند.

- تغییر ناپدید تبدیل: این ویژگی بدیع می‌دانست که افرادی یک سید دارایی به میزان یک مقدار (Hull, 2009) همان شیفت می‌گذارد.

برای محاسبه ارزش در معرض خطر با توجه به نوع توزیع داده‌ها از روش‌های چون پرا متریک، ناب اثر متریک، سایر روش‌ها استفاده می‌کنند. در این پژوهش برای محاسبه ارزش در معرض خطر پرتوپو بیشتر و یک شکست، سرمایه‌گذاری از روش‌های اقتصادی سنجی و شبکه عصبی استفاده می‌گردد که به توضیح مختصر این روشهای می‌پردازیم.

2-2 گروه مدل‌های اقتصادی سنجی

از ویژگی‌های اساسی پارامتری مالی و اریانز ناهمسانی شرطی شکل‌های بازدهی و دیگری دنباله‌های پهن توزیع این یاده‌ها بوده و در نتیجه امکان استفاده از ارزیابی‌های خصوصی این از این می‌برد. (جاهد و همکاران, 2005)، بنابراین برای توضیح این تفسیرات ابتدا "توسعه اکن (1982) مدل‌های تحت عنوان
واریانس ناهمسانی شرطی خود رگرسیون ARCH و سپس توسعه آن توسط بلیسفلد (1986) مدل های تعمیم یافته خود رگرسیون واریانس ناهمسانی GARCH (و همچنین مدل های دیگری هم چون وارد سیاست مالی گردید.

واریانس ناهمسانی (IGARCH)، (GJRARCH)، (TGARCH) و (GJRGARCH)

ARCH (۱–۱).

بر اساس این گروه از مدل‌های جملات اخلاق شوک‌های واریانس مالی، دارای هم‌بستگی متوالی نیستند، ولی به طور گسترده‌ای با یکدیگر وابستگی دارند که این وابستگی را می‌توان از طریق یک تابع در چرخ دمی به صورت زیر نشان داد.

$$v_t \sim \text{iid}(0,1)$$

که در تابع فوق $0 > \gamma_h > \beta_h \geq 0$ و $\alpha_k \geq 0 \beta_h \geq 0$ هر یک فراهم می‌باید.

واریانس ناهمسانی GARCH(q)

از انجایی که برا محاصره ARCH به تعداد بارمانه‌ای زیادی نیازمند می‌باشند و همچنین برای جلوگیری از منفی شدن مقادیر پای ای دارای تاثیر بسیار قبلی، مدل های GARCH را با توجه به ویژگی های داده مالی معمول دنباله‌ی پیش توزیع و دسته‌بندی توزیعی معمول، که هر کدام از این مدل‌ها با ویژگی های خاصی از داده‌های مالی تاکید دارند، مدل فوق به شرح یافته است.

$$v_t \sim \text{iid}(0,1)$$

که در رابطه فوق $\gamma_h > \beta_h \geq 0$, $\alpha_k \geq 0 \gamma_h > \beta_h \geq 0$ به یک GARCH گویند. در رابطه فوق $\gamma_h > \beta_h \geq 0$, $\alpha_k \geq 0$ به یک GARCH گوش دهید.

IGARCH

اگر واریانس کاهش یافته باشد، امکان اینستا تیودن سری‌های زمانی وجود داشته باشد و در سری‌های زمانی مالی نوسانات شرطی، بازگشته بندی و دلخواه نمودن بارداریت در مدل گارچ باعث تغییر رفتار واریانس شرطی نسبت به رفتار یک فرازمینی و به‌دست اید خواهد شد. در نتیجه واریانس شرطی دوره بعد باید تغییر است. از مقدار واریانس شرطی دوره حالت به اضافه یک مقدار جزء ثابت (مقدار واریانس غیر شرطی در این حالت به یک مثلثی خواهد بود). باید دقت نمود که تغییر نمود که برخلاف بازگشته تیودن نامناسب واقعی خود رگرسیون مشروط ب‌

$\alpha(k)=\alpha_0+\alpha_1\varepsilon_{t-k}^2+\ldots+\alpha_q\varepsilon_{t-k}^2$
ناهمسانی واریانس شرطی دارای یک تابع نرمال هندسی از مقادیر حال و گذشته دنباله ε_i^2 می باشد و در این حالت مدل IGARCH، را می توان به صورت ذیل نوشت:

$$\sigma_t^2 = \alpha_0 + \theta \varepsilon_{t-1}^2 + (1 - \theta)\sigma_{t-1}^2$$

EGARCH

گلاستر، جنگز و رانگل (1994) از طریق ایجاد یک مدل به بررسی اثرات متغیرات اخبار خوب و بد بر قیمت سهام پرداختند. اگر $\mu_{t-1} = 0$، را یک آستانه یک گره در نظر بگیریم، آنگاه می توان نتایج اثرات شوک های زیادی و زمینه گوچه تر از آستانه را بر تغییرات گویی کسی سهام مورد بررسی قرار داد. یک مدل EGARCH به صورت ذیل می باشد:

$$\log(\sigma_t^2) = \omega + \rho \sum_{j=1}^{p} \beta_j \log(\sigma_{t-j}^2) + \sum_{j=1}^{n} \alpha_j \varepsilon_{t-j}^2 + \sum_{j=1}^{n} \gamma_j \varepsilon_{t-j}^2$$

پس اگر $\alpha_j \varepsilon_{t-j}^2$ و $\gamma_j \varepsilon_{t-j}^2$ مساوی است با $\alpha_j \varepsilon_{t-j}^2 + \gamma_j \varepsilon_{t-j}^2$ باشد، اثرات شوک های مثبت ε_{t-1}^2 بر ε_{t-1}^2 تغییرات تابعی با استفاده از این مدل می تواند که با همبستگی منفی شدیدی بینان بازدهی در حال حاضر و نوسانات احتمالی آینده وجود دارد. مدل TGARCH مورد استفاده به صورت ذیل می باشد:

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^{n} \alpha_j \varepsilon_{t-j}^2 + \lambda \varepsilon_{t-j}^2 \varepsilon_{t-j} + \sum_{j=1}^{n} \beta_j \sigma_{t-j}^2$$

و مقدار ε_i می تواند در صورت $\varepsilon_i \leq 0$، مقادیر احتمالی ε_i تغییرات احتمالی معناداری می باشد و در غیر این صورت مقدار ε_i احتمالی معناداری می باشد.

GJRARCH

گلستن در سال 1993 مدل GJRARCH را ارائه نمود که از جمله مدل های نابسامانی می باشد و بر اساس رابطه زیر محاسبه می گردد:

$$\sigma_t^2 = \left(\omega + \sum_{i=1}^{n} \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^{n} (\alpha_i \varepsilon_{t-i}^2 + \gamma_i \varepsilon_{t-i}^2 \varepsilon_{t-i}^2) + \sum_{j=1}^{n} \beta_j \sigma_{t-j}^2 \right)$$

که در جمله فوق Y_i همان اثرات احتمالی می باشد و همچنین در اثرات فوق I برای مقادیر گوچه تر از $0 \leq i \leq n$، مقادیر یک را به خود اختصاص می دهد و در غیر این صورت مقدار ε_i می باشد.

تارنین

این مدل می تواند نانیتگرایان اخبار خوب و بد را بر وسایل توزیعه مدل سازی می نماید به عبارتی با استفاده از این مدل می تواند که با همبستگی منفی شدیدی بینان بازدهی در حال حاضر و نوسانات احتمالی آینده وجود دارد. مدل GJRARCH مورد استفاده به صورت ذیل می باشد:

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^{n} \alpha_j \varepsilon_{t-j}^2 + \lambda \varepsilon_{t-j}^2 \varepsilon_{t-j}^2 + \sum_{j=1}^{n} \beta_j \sigma_{t-j}^2$$

و مقدار ε_i می تواند در صورت $\varepsilon_i \leq 0$، مقادیر احتمالی ε_i تغییرات احتمالی معناداری می باشد و در غیر این صورت مقدار ε_i احتمالی معناداری می باشد.

توان بین نمود که میزان دقت پیش بینی این مدل بخش تحت تاثیر نوع توزیع مورد استفاده قرار می‌گیرد. این فرد به همراه این توزیع نسبت به آن مدل بخش تحت تاثیر نوع توزیع مورد استفاده قرار می‌گیرد.

\[
\hat{p} = \sum_{i=1}^{n} a_i + \sum_{j=1}^{p} \beta_j + \sum_{k=1}^{r} \gamma_k.
\]

در فرمول فوق \(k \) عبارت است از ارزش مورد انتظار استاندارد شده. \(\chi_i \) برای مقادیر استاندارد شده کمتر از صفر، یا یوب توجه داشت که اگر نوع توزیع متقارن باشد مقادیر \(\chi_i \) برابر 0/5 خواهد بود.

7-2-3- شیبکه های عصبی

آغاز و عنصر ساختار تکمیل دهنده شبکه های عصبی به گونه ای است که همانند مقایسه و پردازش داده‌ها را به صورت همزمان انجام می‌دهد. هر شبکه از لایه ورودی، میانی و خروجی تشکیل می‌گردد.

عناصر پردازشی هر شبکه عصبی وظیفه دریافت و پردازش داده‌ها را به عهده‌دار که این داده‌ها می‌توانند داده‌های شناسایی و اطلاعات سایر تصورات واندازه‌های دوره‌ای با جهت و موقعیت منجر به سرعت و دقت وارد شده است و پس از تحلیل و پردازش در لایه میانی که عملیات جهیزی (تاریخ تبدیل) بر روی داده‌ها را انجام می‌دهد به صورت یک یا چند منجر به بهره‌مندی از لایه خروجی خارج می‌گردد. تابع جمع کننده، سطح فعال شدن داخلی یک تاریخ را محاسبه می‌نماید. این تابع به صورت در لایه خروجی و لایه‌های پنهان شبکه قرار دارد و در دل این متغیراتی می‌باشد که با توجه به سطح فعال شدن داخلی و بنابراین داده‌های آن توان خنثی و یا غیر خنثی بوده و بر اساس نیاز مورد نظر برگزیده گردید. معرفت مناسب تابع خنثی تابع سیگموئیدی‌ای نام داده و این تابع به صورت ذیل می‌باشد.

\[
Y_i = \frac{1}{1 + e^{-\chi_i}}.
\]

\(\chi_i \) در فرمول فوق از وسعت ناحیه خنثی بودن تابع را تعیین و \(Y_i \) از ارزش نرمال می‌باشد. \(\chi_i \) به صورت خنثی و با نظیر دارنده در دایره‌ای منجر به منجر به اینکه اگر تابع تبدیل پیوسته از یک تابع تبدیل پیوسته از یک تابع مجزا استاندارد این استفاده می‌گردد.

\[f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases}\]

خطای خنثی و یا غیر خنثی به وسعت بر اساس نیاز مورد نظر برگزیده گردید. معرفت مناسب تابع خنثی تابع سیگموئیدی‌ای نام داده و این تابع به صورت ذیل می‌باشد.

\(Y_i = \frac{1}{1 + e^{-\chi_i}} \)

که در فرمول فوق از وسعت ناحیه خنثی بودن تابع را تعیین و \(Y_i \) از ارزش نرمال شده \(\chi_i \) می‌باشد. \(\chi_i \) به صورت خنثی و با نظیر دارنده در دایره‌ای منجر به منجر به اینکه اگر تابع تبدیل پیوسته از یک تابع تبدیل پیوسته از یک تابع مجزا استاندارد این استفاده می‌گردد.

\[f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases}\]

گردید. در قسمت بالا \(\chi_i \) به عنوان یک تابع خنثی و با نظیر دارنده در دایره‌ای منجر به منجر به اینکه اگر تابع تبدیل پیوسته از یک تابع تبدیل پیوسته از یک تابع مجزا استاندارد این استفاده می‌گردد.

\[f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases}\]

گردید. در قسمت بالا \(\chi_i \) به عنوان یک تابع خنثی و با نظیر دارنده در دایره‌ای منجر به منجر به اینکه اگر تابع تبدیل پیوسته از یک تابع تبدیل پیوسته از یک تابع مجزا استاندارد این استفاده می‌گردد.

\[f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases}\]

گردید. در قسمت بالا \(\chi_i \) به عنوان یک تابع خنثی و با نظیر دارنده در دایره‌ای منجر به منجر به اینکه اگر تابع تبدیل پیوسته از یک تابع تبدیل پیوسته از یک تابع مجزا استاندارد این استفاده می‌گردد.

\[f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases}\]

گردید. در قسمت بالا \(\chi_i \) به عنوان یک تابع خنثی و با نظیر دارنده در دایره‌ای منجر به منجر به اینکه اگر تابع تبدیل پیوسته از یک تابع تبدیل پیوسته از یک تابع مجزا استاندارد این استفاده می‌گردد.
متفاوت داده دریافتی می‌نماید. بنابراین این از یک طرف یک نورد وزن‌های متناسب خود را مطلوب قانون
یادگیری باعث خودش نگیری می‌دهد و از طرف دیگر وابسته به رفتار نرون دیگر در شبکه می‌باشد.
فرآیند یادگیری در سه مرحله محاسبه کردن بروز داده‌ها، مقایسه بروز داده‌ها با پاسخ های مطلوب و
تعديل وزن ها تکرار این فرآیند می‌باشد. در این مرحله سعی می‌گردد یا تغییرات مداوم وزن‌های باقی
مانده یعنی تفاوت بین بروز داده واقعی و بروز داد مورد نظر به صورت پرسید. شبکه های عصبی مصنوعی
مانده ها (خطاهای) را به طرف متفاوت با توجه به الگوریتم یادگیری که از آن استفاده می‌نمایند، مورد محاسبه
قرار می‌دهد و بیان می‌گردد که هنگامی که بیش از یک عدد الگوریتم یادگیری با توجه به شرافت و موفقیت های
(Medsker et al., 1992)

معادلات زیر را در ارتباط با نحوه یادگیری نرونهای یک شبکه عصبی نوشته:

\[W_{ij}(t) = -aW_{ij}(t) + \Delta W_{ij}(t) \]

\[W_{ij}(k + 1) = (1 - a)W_{ij}(k) + \Delta W_{ij}(k) \]

در معادلات فوق \(W \) همان وزن سیناپسی است که آزمای گزارش بوده راهی را داشته و \(\Delta \)
نماید و \(W \) یک عبارت تضییح کننده است.

۱) ساختار شبکه های عصبی مصنوعی به شبکه های پش خور و پس خور با گرگش‌تی قسمی می
گردد. شبکه عصبی پش خور به شبکه نک لاپ و ون لاپی یافتنی می‌گردد. شبکه نک لاپ و ون لاپی
هر لاپی شامل ماتریس وزن، جمع کننده ها، تابع تبادل می‌باشد. در شبکه پش خور
حداقل یک سیگنال گرگشتی از یک نور به همان نور یا نورهای همان لاپی و یا لاپی قابل وجود دارد.

با دیده‌نوازند که این یادگیری تا زمانی ادامه می‌یابد که یکی از شرایط زیر حاکم گردد:

1- رشد رشد (Growth) به صورت معنی‌دار
2- کوچک‌ترین مقدار تابع عملکرد شبکه از مقدار هدف مشخص
3- کوچک‌ترین زمان آموزش از زمان معین
4- کوچک‌ترین مقدار تابع خطای از میزان مشخص شده

۲- یکشیپه پژوهش

تئوری پورتکوی با صورت مدنی در سال ۱۹۵۲ اولین بار توسط هری مارکووینی با به‌عصر وجود
گذاشته‌است. با توجه به نوع داده های دیدگاه‌ها، تحقیقات متفاوتی جهت تعیین میزان ریسک بروز
شد و توسعه بازارهای پولی و مالی انجام شده است که به جهت مورد از آن استفاده می‌گردد
از روش در معرض ریسک در سال ۱۹۲۲ در پورس نیویورک و در نظمیه‌های اساتیدی جون ۱۹۵۵ و
تلسر ۱۹۵۵ نمایند گردی اما بامول در سال ۱۹۶۳ آن را با عنوان معیار حد اطمینان عادی مورد
انظار مطرح شد. در سال ۱۹۹۹ اسکندر در دانشگاه ایلینوی از طریق شبیه سازی تاریخی VaR را اندوزه گیری
کرد. برنز (2002) با استفاده از مدل های GARCH برای داده های روزانه شاخص 500 برای 70 سال به تخمین و تجییب گرفت که تخمین زن های VaR در مقایسه با سایر مدل ها به دلیل دقت و سازگاری سطح احتمال، عملکرد بهتری دارند. (مجله تحقیقات اقتصادی شماره 86) در سال 2004 چندین روش و روش‌پژوهی از روابط با کارایی مدل های GARCH و مدل همبستگی برای روش VaR مورد محاسبه قرار داد و به نتایی متفاوتی دست یافت.

مختصات دقیق تر ارگش در معروف خطر تجییبی را نشان داده و به این تجییب رضی‌کننده که مدل GARCH از کارایی بالاتری برخوردار می‌باشد. در سال 2006 سوو و بو در تجییبی تجییبی گرفتن گردید که مدل VaR هزین مزدیکه "که قرض بر نرمال بودن توزیع چندی می گزیده از کارایی کمتری برخوردار می‌باشد. جراحی چهارچوب در دانشگاه MIT روش های انتاریوسیپریس و بزرگه پروتیوی به صورت تفکیکی و تفاوت "برای تجییبی ارگش در معروف خطر با استفاده از روش برنت سبیلی و برنامه ریزی با اعداد صحیح و سایر روی ها را مورد بررسی قرار داد. میشل اچ برینت، هانس جرچ، میشل هام، دانال روج، فیلیپ سابلریتاس و جرج جوی. تاکی چکو همگی از دانشگاه مالی و بانکداری و دانشگا امروز هانوور در تجییبی خود که در سال 2010 ارائه نمودند و عملکرد دو مدل شبکه های عصبی و سایر روی های آماری را برای محاصل آری ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی قرار دادند. این محاسبه ارگش در معروف خطر در جهت بهینه سازی پردازش مورد بررسی CREDIT GARCH VaR Risk متریکش و GARCH روش VaR با روش محاصله ارگش در معروف خطر سیستم که همینه نتیجه گرفتن گردید.

محتوا، گذراب (2002) با استفاده از مدل های GARCH برای داده های روزانه شاخص 500 برای 70 سال به تخمین و تجییب گرفت که تخمین زن های VaR در مقایسه با سایر مدل ها به دلیل دقت و سازگاری سطح احتمال، عملکرد بهتری دارند. (مجله تحقیقات اقتصادی شماره 86) در سال 2004 چندین روش و روش‌پژوهی از روابط با کارایی مدل های GARCH و مدل همبستگی برای روش VaR مورد محاسبه قرار داد و به نتایی متفاوتی دست یافت.
روش شناسی پژوهش
پژوهش حاضر از نظر ویژگی داده‌ها، پیوستگی و روش پژوهشی داشته است. از نظر انتخاب
بهترین روش ارزیابی منتهی به شرکت‌های سرمایه‌گذاری از دیدگاه ارزش در معرض خطر از نوع پژوهش‌های
کاربردی بوده و ریسک و برده پرتفوی از جمله متغیرهای این پژوهش هستند.
از انجایی که هدف اساسی این تحقیق بررسی و ارزیابی قدرت تبدیل و پیش‌بینی مدل‌های خانه،
اقتصاد سنگی و شبکه عصبی در تعبیر ارزش در معرض خطر پرتفوی شرکت‌های سرمایه‌گذاری با طراحی
بیشتر و یک شرکت سرمایه‌گذاری می‌باشد، اما برای جمع اوری متناسب ترسی از روش کتابخانه‌ای و برای
جمع اوری داده‌های مورد نیاز جهت آزمون فرضیات از روش آرشیوی و با مراجعه به سایت بورس‌های
به‌دست‌آمده لازم صورت گرفته است.
در این پژوهش از بین شرکت‌های سرمایه‌گذاری فعال در بازار سرمایه 21 شرکت سرمایه‌گذاری به
دلیل اینکه دارای اطلاعات جامع تر و همچنین دارای میزان سرمایه قابل قبول در بازار سرمایه نسبت به
سایر شرکت‌ها یا بوده، به عنوان جامعه آماری مورد بررسی قرار گرفته‌اند. بر منظور اجرای این پژوهش ون و
افلام تحقیق‌دهده پرتفوی شرکت‌های سرمایه‌گذاری جامعه آماری جمع اوری و همچنین تغییرات وری
و قیمتی آنها طی مدت میان مذکور مشخص و در نتیجه پژوهش پرتفوی مورد نظر پژوهش آماده گردید.
برای سازمان‌های داده‌ها و محاسبات اندیابی بروی داده‌ها هیچ‌کدام دارای افزایش تحلیل داده‌ها و برآورد مدل‌ها جهت تعبیر ارزش در معرض خطر از طریق افزایش MATLAB، EViews، مدل‌های EViews و دیگر افزایش نیاز هم به مدل‌های ماپ پژوهش‌ها و ارزیابی برای پرتفوی در بازار سرمایه ایران معرفی شده است.

فرضیه‌های پژوهش

1. مدل‌های گروه اقتصاد سنگی (بازار متریک) توان تبدیل ارزش در معرض خطر پرتفوی شرکت‌های
سرمایه‌گذاری را دارد.
2. مدل‌های شبکه عصبی توان تبدیل ارزش در معرض خطر پرتفوی شرکت‌های سرمایه‌گذاری را
دارند.
3. تفاوت معنی‌داری بین مدل‌های اقتصاد سنگی و شبکه عصبی در ارزیابی میزان ارزش در معرض
خطر پرتفوی وجود دارد.

یافته‌های پژوهش

در پژوهش حاضر جهت اجرای مدل‌های گروه اقتصاد سنگی ابتداً "پیامب نز بحذف پرتفوی (RP)
طریق دو آزمون دیکی فول تعمیم پایه (ADF) و آزمون فیلیبس- پرون (PP) مورد سنگی قرار گرفت.
نتایج حاصل از دو آزمون فوق برای سری‌های تحت بررسی مانایی همه آنها را در سطح پکی درصد تایید

6- پژوهش‌های دیگر

در پژوهش‌های دیگر جهت اجرای مدل‌های گروه اقتصاد سنگی ابتداً "پیامب نز بحذف پرتفوی (RP)
طریق دو آزمون دیکی فول تعمیم پایه (ADF) و آزمون فیلیبس- پرون (PP) مورد سنگی قرار گرفت.
نتایج حاصل از دو آزمون فوق برای سری‌های تحت بررسی مانایی همه آنها را در سطح پکی درصد تایید.
نمونه و این بدان معنا است که گستن‌های تابنی برای بایزده‌ها وجود داشته و بنا براین امکان وجود رگرسیون کاذب را در پی در نگرفته. همچنین باید از نتایج و با گستن برای وزن و مدل جمله خطای به‌کار بردن ARCH دیگر از اثر ARCH نیز اگاهی یافتن. به منظور اطمینان خاطر از وجود اثر جمله خطای سری زمانی ضریب لگاریتمی استفاده می‌گردد. بر این می‌باید به منظور بررسی ثابت و با تغییر سطح واریانس جمله خطای سری زمانی نرخ بایژه‌های قربانی از لگاریتمی فرض صفر سبکی بر عدم وجود اثرات ARCH در سری تحت بررسی و برخی از مدل‌هایی در سری تحت بررسی ARCH نباید. مسئله می‌شود و این بدان معنا است که گستن جمله خطای‌های بی‌اعتمادی بوده و ثابت نیست، و خیلی با استفاده از این معیار جهت تعیین وضعیت به‌کار GARCH استفاده می‌نماییم.

با توجه به نتاگی بدست‌آمده از الگوهای GARCH استفاده برای محاسبه ارزش در معرض خطر به عنوان خاص نوسانات روش GARCH، دارای بالاترین کاراپی می‌باشد و تعادل دفعات استفاده از این مدل به مراتب بیشتر از سابع مدل‌ها می‌باشد. تعادل دفعات استفاده از همه مدل‌ها در جدول شماره (1) آمده است:

جدول شماره 1 - تعادل دفعات استفاده از مدل‌ها

<table>
<thead>
<tr>
<th>GJR-GARCH</th>
<th>TGARCH</th>
<th>IGARCH</th>
<th>EGARCH</th>
<th>GARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>1</td>
</tr>
</tbody>
</table>

توجه: نتایج تحقیق

پس از طراحی شبکه عصبی پرسپترون می‌باشد معمولا شبکه انجام انجام شده و شبکه به‌هنه را انتخاب نموده و از آن که برای GARCH استفاده نموده. می‌توان انتخاب شبکه مطلوب آن است که این شبکه می‌باشد از نظر خطاها و بیشتر معیار میانگین قدر مطلق تغییر SAHA در حداصل باشند که میزان دقت این ساخترهای با سهولت آزمون‌های کوپاکوی و کریستوسوفسیوس از طریق پس از مدل مورد بررسی فار گرفته‌است. از بین ساخترهای مورد استفاده ساختار پنجم به‌رفت استفاده و ساختار سه با جنایت استفاده بهترین ساخترهای مورد استفاده بودند. جدول شماره (2) نشان دهنده تعادل دفعات استفاده از شبکه می‌باشد.

جدول شماره 2 - تعادل دفعات استفاده از شبکه

<table>
<thead>
<tr>
<th>نوع شبکه</th>
<th>اول</th>
<th>دوم</th>
<th>سوم</th>
<th>چهارم</th>
<th>پنجم</th>
<th>ششم</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعادل دفعات مورد استفاده</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

توجه: نوع شبکه پژوهش
به منظور اعتبر سنجی و تعيين ميزان قدرت مدل های بينی و همچنين محاسبه كننده
ارزش در معرض خطر جهت بررسی فرضيات اول و دوم از آزمون های كوبيک و كريستوفرس و
همچنين برای بررسی فرضيه سوم از آماره آزمون لويز استفاده مي نماییم. نسبت كوبيک دراري
توزيع كاي دو با یک درجه آزادی بوده و در صورتی که آماره آزمون محاسبه شده از توزيع کاي دو
با یک درجه آزادی و در سطح خطاي مورد نظر كمتر باشد مي توان ادعاه نمود، كه مدل از اعتبار
مناسب در بيني بيني VaR برخوردار است(Kupiec,1995).

VAR = (hμ - √hσ)pα

5-1- محاسبه ارزش در معرض خطر (VAR)
با محاسبه شاخص نوسانات و يا به عبارت دیگر σp برای انواع الگوهای GARCH و شبکه
عصبي مدل مناسب برای پرتفوی هر شرکت جهت محاسبه VaR انتخاب می گردد تا با ان بتوان
ارزش در معرض ریسک درصدی رونته (VAR) در سطح اطمنیان مختلف شامل 99%, 95% و
90% را محاسبه نمود. برای محاسبه ارزش در معرض خطر از فرمول زیر استفاده گردید.

\[
\text{VAR} = \sum_{i=1}^{n} \left(h_{i}^{\mu} - \sqrt{h_{i}^{\sigma}} \right) \alpha
\]

در رابطه فوق، Z0 به شاخ نوسانات محاسبه شده از مدل‌ها ده‌گانه نمایان‌یابنگی برای رئوسی VaR و σp با رابطه میان‌گرایانه آزمون‌های کوپیک و کریستوفرسوی را محاسبه می نماییم. تا توان
تکیه‌نگار مدل‌ها در توزیع ارزش در معرض خطر مورد بررسی قرار دهیم و آنها از طریق
آزمون نوزف۰ برای هر دو مدل مقدار انویلیت بندی نموده و مدل برتر را معرفی می کنیم.
بررسی نتاژ آزمون کوپیک با توجه به مدل های بهینه انتخاب شده توضیح دهنده این موضوع
است که این مدل ها قادر بودند که ارزش در معرض خطر 0/99% بهروزش پمک بینی نمایند، و در سطح اطمنیان 0/95% قادر به پمک بینی ارزش در معرض خطر 0/15% را برای 20 شرکت بوده ولی در سطح 0/90% ثانیا توانست است. جدول شماره 3 نشان دهنده تعداد شکست و شکست مدلا در سطوح اطمنیا متاو در برآورد

جدول شماره 3- تعداد موفقیت و شکست مدل‌ها در سطوح اطمنیا متاو در

<table>
<thead>
<tr>
<th>شاخص‌های</th>
<th>درصد پیروزی</th>
<th>تعداد شکست</th>
<th>تعداد پیروزی</th>
<th>تعداد اطمنیا</th>
</tr>
</thead>
<tbody>
<tr>
<td>%4/8</td>
<td>%95/2</td>
<td>21</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>%28/6</td>
<td>%71/4</td>
<td>21</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>%90/5</td>
<td>%9/5</td>
<td>21</td>
<td>19</td>
<td>2</td>
</tr>
</tbody>
</table>

ملاحظه: نتایج تحقیق
نتایج آزمون کریستوفرسن نشان دهنده موافقیت این گروه از مدل ها می باشد. جدول شماره
(4) نشان دهنده تعداد موافقیت و شکست مدل ها در سطوح اطعامنی متفاوت در پراورد
VaR

جدول شماره 4- تعداد و درصد موافقیت و شکست آزمون کریستوفرسن

<table>
<thead>
<tr>
<th>درصد شکست</th>
<th>درصد پیروزی</th>
<th>سطح اطعامنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>%4/8</td>
<td>%95/2</td>
<td>15</td>
</tr>
<tr>
<td>%33/4</td>
<td>%66/6</td>
<td>14</td>
</tr>
<tr>
<td>%90/5</td>
<td>%95</td>
<td>2</td>
</tr>
</tbody>
</table>

ماخوا: نتایج تحقیق

نتایج آزمون کویپکس مدل های بهینه انتخاب شده شکه عصی بیان کننده آن است که این
مدل ها قادر بودند که ارزش در معرض خطر 15 شرکت را در سطح اطعامنی 99/0/0درصدی پیش
بینی نمایند ولی قادر به پیش بینی 6 شرکت در این سطح اطعامنی نبودند. هم چنین شکه
عصی توانسته برای هشی نشان دهد در سطح اطعامنی 90/0/0یک پیش بینی درست انجام دهد. برای سه شرکت نیز شکه ع
صی در هیچ سطحی قادر به پیش بینی نبوده است. جدول شماره (5) نشان دهنده میزان موافقیت و عدم موافقیت
شرکت های جامعه آماری در سطوح اطعامنی متفاوت است.

جدول شماره 5- میزان موافقیت و عدم موافقیت شرکت های جامعه آماری

<table>
<thead>
<tr>
<th>درصد پیروزی</th>
<th>درصد شکست</th>
<th>سطح اطعامنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>%28/6</td>
<td>%71/4</td>
<td>15</td>
</tr>
<tr>
<td>%52</td>
<td>%38</td>
<td>8</td>
</tr>
<tr>
<td>%76/2</td>
<td>%23/8</td>
<td>5</td>
</tr>
</tbody>
</table>

ماخوا: نتایج تحقیق

نتایج آزمون کریستوفرسن شکه عصی نشان دهنده آن است که از 21 شرکت تحت این
آزمون 9 شرکت در سطح احتمال 99/0/0 و 4 شرکت در سطح احتمال 95/0/0 پیروز از این آزمون
بیرون آمدند و این بدان معنا است که پیروزی و شکست های امرز به پیروزی و شکست های
رژه روزه قبل مرتبط می باشد و به ترتیب 12 و 17 شرکت نزی این آزمون را با موافقیت بیشت
نگذاشته، يعني اینکه هیچ ارتباطی بین پیروزی ها و شکست های امرز و روزهای
گذشته وجود
ندارد. در سطح احتمال 90% نیز هیچ گونه تفاوت معنی‌داری در جدول شماره 6 نشان دهنده تعداد و درصد موفقیت و شکست این آزمون می‌باشد.

جدول شماره 11- تعداد و درصد موفقیت و شکست شبکه عصبی در آزمون کریستوفرسن

<table>
<thead>
<tr>
<th>درصد پیروزی</th>
<th>تعداد شکست</th>
<th>درصد شکست</th>
<th>سطح اطمینان</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/2</td>
<td>42/8</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>71</td>
<td>19</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

ماد: نتایج تحقیق

با توجه به نتایج بدست آمده می توان بیان نمود که در سطح اطمینان 99%، در 42/8% مواقع تختی داده‌ها از یکدیگر مستقل و در 57/2% مواقع شکست‌ها و پیروزی‌ها با یکدیگر در ارتباط می‌باشند. همچنین در سطوح دیگر اطمینان آماره‌ای آزمون در اکثریت مواقع بانگر ارتباط شکست‌ها و پیروزی‌ها از یکدیگر می‌باشد.

از انجایی که ما از 1911 داده را برای برآورد مدل و تعداد 911 داده از بارده‌وافقي پرتوی را جهت تست مدل‌ها در نظر گرفته‌یم. نتایج تجربه‌ی تختی‌های مورد انظار در سطوح اطمینان 99، 95 و 90% با تقریب، برای است با 10، 48 و 95 که در جدول شماره 7 نشان داده شده است و مقادیر SPQ مورد انظاری نیز در این سطوح از تختی محاسبه شده است.

جدول شماره 7- مقادیر SPQ در سطح تعداد تختی‌های مورد انظار

<table>
<thead>
<tr>
<th>سطوح اطمینان</th>
<th>تعداد تختی و SPQ</th>
<th>SPQ</th>
<th>SPQ بهینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/90</td>
<td>95</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>0/95</td>
<td>0/0959</td>
<td>0/0208</td>
<td></td>
</tr>
<tr>
<td>0/99</td>
<td>0/1798</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ماد: نتایج تحقیق

برای مقایسه بهتر چگونگی عملکرد مدل‌ها برای برآورد ارزش در معرض خطر جدول شماره 8 انجام گردیده است. با توجه به نتایج بدست آمده کارایی گروه مدل‌ها در افتتاحی درصد تنها هم از نظر تعداد و هم از نظر عملکرد (بر اساس آماره لوییز) نسبت به مدل‌های شبکه عصبی دارای تفاوت معنی‌داری می‌باشد.
جدول شماره 8- وضعیت میزان کارآیی مدل ها بر اساس آماره لویز

<table>
<thead>
<tr>
<th>شکل عصبی</th>
<th>اقتصادسنجی</th>
<th>عملکرد</th>
<th>مدل و احتمال</th>
</tr>
</thead>
<tbody>
<tr>
<td>%90</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>%95</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>%99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

مش: نتایج تحقیق

6- نتایج بیوزهش

6-1 فرضیه اول به این صورت مطرح شده بود که مدل های گروه اقتصاد سنگی (پارامتریک) توان تبیین ارزش در معرض خطر برترین شرکت های سرمایه گذاری را دارند. با بررسی نتایج آزمون کویپک و کریستو فرس این گروه از مدل ها می توان بیان نمود که مدل ها قادر می باشند که ارزش در معرض خطر 20 شرکت را در سطح اطمنی 99% برسی پیش بینی نمایند و در سطح اطمنی 95% قادر به پیش بینی ارزش در معرض خطر 15 شرکت بوده و در سطح اطمنی 90% تنها توانسته است VaR را برای 2 شرکت برسی بخش مهیج برد. بنابراین می توان بیان نمود که مدل های گروه اقتصاد سنگی (پارامتریک) توان تبیین ارزش در معرض خطر پرترش شرکت های سرمایه گذاری را دارند.

6-2 فرضیه دوم نیز بیان کننده توان تبیین مدل های عصبی عصبی در تعیین ارزش در معرض خطر برترین شرکت های سرمایه گذاری می باشد.

بررسی نتایج آزمون کویپک بسته به شکل عصبی بیان کننده آن است که این مدل ها قادر بودند که ارزش در معرض خطر 15 شرکت را در سطح اطمنی 99% به درستی پیش بینی نمایند ولی قادر به پیش بینی 6 شرکت در این سطح از اطمنی نبودند و در سطح اطمنی پایینتر قدرت پیش بینی این گروه از مدل ها کمتر است. بنابراین بر قدرت نمی توان تبیین مدل های عصبی عصبی در تعیین ارزش در معرض خطر برترین شرکت های سرمایه گذاری را ناپذیر نمود.

6-3 فرضیه سوم بین صورت بیان شده بود که این تفاوت معنی داری بین مدل های اقتصاد سنگی و شکل عصبی عصبی در ارزیابی میزان ارزش در معرض خطر پرترش وجود دارد.

پای بی نتایج نتایج بیان کننده مدل های اقتصاد سنگی هم از نظر تعداد و هم از نظر عملکرد (بر اساس آماره لویز) نسبت به مدل های شکل عصبی دارای تفاوت معنی داری می باشد. به عبارت دیگر گروه مدل های اقتصاد سنگی دارای توان تبیین بهتری نسبت به مدل های گروه شکل عصبی می باشد.
نتیجه گیری و بهت

این یک پژوهش قصد داشت توان تنبیه مدل های اقتصاد سنجی و شبکه عصبی در سنگش ارزش در معادن خطر برپنی شرکت های سرمایه‌گذاری را مورد بررسی قرار دهد. پس از یک جلسه از آوری داده های مورد نظر و برآورده باشید، مشخص شد که شرکت در محصولات خود، ممکن است به این ترتیب عملکرد یک مدل مارک مورد تحقیق قرار گیرد.

در نتیجه، مدل های اقتصاد سنجی و شبکه عصبی ممکن است بهترین بهترین راه حل باشد. به‌طور کلی، مدل‌های اقتصاد سنجی می‌توانند با قدرت حل مسئله در معادن خطر برپنی شرکت‌ها سرمایه‌گذاری‌های بسیاری را به‌عنوان یک کلید اول به شکل اجرا شود.
فهرست منابع

النون، نرمین و همکاران. 1391، نظریه جدید سید درآی و تحلیل سرمایه‌گذاری، جلد اول، چاپ اول.

ترجمه علی سویری، تهران، پژوهشکده پژوهی و برنامه‌ریزی اندوز و نژاد، 1386، افتتاحیه سری‌های زمینی "حل اول، چاپ دوم، ترجمه مهدی صادقی شاهدی، سعدی شوشتر، تهران، انتشارات دانشگاه امام صادق پارکر، جنوب، 1378، "مدیریت ریسک، ابتدای تعریف و کاربردهای آن در سازمان‌های مالی "ترجمه علی پارسیان، مجله تحقیقات مالی، شماره 13

دلار، علی "مبانی نظری و عملی در علوم انسانی و اجتماعی "(1384)، چاپ چهارم، تهران، انتشارات رشد.

رادیور، میثم و عبه تبریزی، حسین "ندازه‌گیری و مدیریت ریسک بورس "(1388)، چاپ اول، تهران، موئسه انتشارات آگاه پیشبرد

راهی، رضا، یوپان فر، احمد، مدیریت سرمایه‌گذاری پیشرفته، 1389، چاپ چهارم، تهران، انتشارات سمت.

زاینده، فرانک، کیا یورون، کیت سی (1384)، "تجزیه و تحلیل سرمایه‌گذاری و مدیریت سبد اوراق بهادار "، "ترجمه اسلامی، بیژن گلی، غلامرضا و دیگران، چاپ اول، تهران، انتشارات دانشگاه امور اقتصادی شاهرودی، علی‌اصغر، رضیه محمد، (1385) "محاسبه آرزش در معیار خطر برای شاخص های عمده بورس اوراق بهادار تهران با استفاده از روش پارامتریک".

عیل فتاحی، (1386)، مقام‌گذاری و کارایی و قدرت بخش بینی شیکه‌های عصبی و تحلیل مناسبی جند گانه در پیش بهینه‌نما مالی شرکت‌های تولیدی، رساله فوق لیسانس، دانشگاه آزاد اراک کنشوارز، جدید، غلامرضا و صمدی، یاقوت، 1388، "پاورور و پیش بهینه‌ناهیدی در بورس سهام تهران، FIGARCH مجله تحقیقات اقتصادی، پارس 88 شماره 86.

گویذری، میلا، امیری، بهزاد، (1392)، "اراده مدل بر شناسایی عوامل موثر بر قیمت آن شیکه به روش شبکه عصبی مصنوعی و مقایسه آن با مدل‌های رگرسیون " فصلنامه مهندسی مالی و مدیریت اوراق بهادار، شماره 1389

منجی، محمد، بقی، جلالت، 1391، "مبانی شیکه‌های عصبی "، جلد اول، چاپ هشتم، انتشارات دانشگاه صنعتی امیر کیاری.

هامان، رابرت، ترجمه پارسیان و بهروز خدایی، جلد اول و دوم، چاپ اول و دوم، تهران، انتشارات ترجمه 1384

* Breitner, H. Luedtke, C. Mettenheim, H. Rosch, D. Sibbertsen. And Tymchenko, G. "Modeling portfolio Value at Risk with Statistical and Neural Network Approaches" In statute for Information Systems Reserch, the Univercity of Hannover, Germany.
* Dunis, C., Laws, J., Karathanasopoulos, A., "GP Algorithm Versus Hybrid and Mixed Neural Networks". Liverpool John Moores University.

1. ROY
2. Telser
3. Bamoul
4. Guldiman
5. Incremental VaR
6. Delta VaR
7. Value at Risk
8. Autoregressive Conditional Heteroskedastic
9. Generalized Autoregressive Conditional Heteroskedastic
10. Integrated GARCH
11. Exponential GARCH(EGARCH)
12. Threshold GARCH (TGARCH)
13. Glosten, Jajannathan and Runkle GARCH
14. Sigmoid Function
15. Threshold Detector
16. Feed Forward
17. Feed Back
18. Bias
19. Max Epochs
20. Goal
21. Max Time
22. Min Grad
23. Markowitz
24. Risk Metrics
25. ex post factor
26. Cross Validation
27. Local Minima
28. Mean Absolute Error
29. Mean Squared Error
Sum Squared Error