تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,358 |
تعداد دریافت فایل اصل مقاله | 54,843,966 |
Application of Different Methods of Decision Tree Algorithm for Mapping Rangeland Using Satellite Imagery (Case Study: Doviraj Catchment in Ilam Province) | ||
Journal of Rangeland Science | ||
مقاله 7، دوره 3، شماره 4، دی 2013، صفحه 321-330 اصل مقاله (4.04 M) | ||
نوع مقاله: Research and Full Length Article | ||
نویسندگان | ||
Marzban Faramarzi* 1؛ Hassan Fathizad2؛ Nasibe Pakbaz3؛ Behzad Golmohamadi4 | ||
1Rangeland and Watershed Management Group, Faculty of Agriculture, Ilam University, Ilam | ||
2Combating Desertification, Faculty of Agriculture, Ilam University, Ilam | ||
3Agronomy, Agriculture College, Ilam University, Ilam | ||
4Rangeland Management, Faculty of Natural Resources, Tarbiat Modares University | ||
چکیده | ||
Using satellite imagery for the study of Earth's resources is attended by many researchers. In fact, the various phenomena have different spectral response in electromagnetic radiation. One major application of satellite data is the classification of land cover. In recent years, a number of classification algorithms have been developed for classification of remote sensing data. One of the most notable is the decision tree. The aim of this study was to compare three types of decision trees split algorithm for land cover classification in Doviraj catchment in Ilam province, Iran. For this, propose, first, the geometric and radiometric corrections were performed on the 2007 ETM+ data. Field data as training sites were collected in the various classes of land use. The results of image classification accuracy assessment showed that the Gini split classification. With kappa value 89.98 and the entire accuracy 91.17% was significantly higher, then categorization of branching and the branching ratio and Entropy with kappa values of 88.45 and 90.65 and the entire accuracy of 86.21 and 86.15%, respectively. | ||
کلیدواژهها | ||
Classification tree؛ Gini؛ Entropy؛ Ratio؛ Doviraj | ||
مراجع | ||
Alavipanah, S. K., 2005. Application of remote sensing evaluating in earth sciences. Tehran University Press, p. 478. (In Persian). Alavipanah, S. K., and Valdani, M., 2010. Remote sensing evaluating and GIS, Tehran University Press, pp. 149-153. (In Persian). Arekhi, S., 2012. assesment of decision tree method for mapping land use using sattelite imagery in the Chamgardelan in Ilam Province, Jour. Geography and Land Use Planning, 2 (4):75-84. Bonyad, A. I., and Haji Ghaderi, T., 2007. The provision of Zanjan province natural forest map using Landsat 7 ETM+ sensor data. Jour. Agriculture Technologies and Sciences and Natural Resources, 42(11): 627-638. (In Persian). Borak, J. S.,and Strahler, A. H., 1999. Feature selection and land cover classification of a MODIS-like dataset for a semiarid environment. INT. Jour. Remote Sensing, 20: 919-938. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J., 1984. Classification and regression trees. Monterey, CA: Wadsworth, 358 p. Chubey, M. S., Franklin, S. E., and Wulder, M. A., 2006. Object-based Analysis of Ikonos-2 Imagery for Extraction of Forest Inventory Parameters. Photogrammetric Engineering & Remote Sensing, 72 (4): 383-394. Defries, R. S., and Townshend, J. R. G., 1994. Global land cover: comparison of groundbaseddata sets to classi. cations with AVHRR data. In Environmental Remote Sensingfrom Regional to Global Scales, edited by G. M. Foody and P. J. Curran (New York: Wiley. 84–110. Hansen, MC., Dub ayah, R. and Defries, R.S., 1996. Classification trees: an alternative to traditional land cover classifers. Int. Jour. Remote Sensing, 17:1075-1081. Huete, A., 2004. Remote Sensing for Natural Resources Management and Enviromental Monitoring: Manual of Remote Sensing 3 ed, Vol.4. Univercity of Arizona. Loveland, T. R., Reed, B.C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W., 2000. Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR data. International Jour. Remote Sensing, 21: 1303-1330. Lu, D., Mausel, P., Brondi´zio, E., and Moran, E., 2004. Change detection techniques. Int. Jour. Remote Sensing, 25(12): 2365–2407. Mokhtari, A., Feiznia, S., Ahmadi, H., Khawajaldin, S. J., and Rahnema, F. A., 2000. Application of remote sensing evaluating in data layers provision of lands use and land coverage in soil erosion model. MPSIAC, Jour. Construction and Research, 46: 82-87. (In Persian). Otukei, J. R., and Blaschke, T., 2010. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Jour. Applied Earth Observation and Geoinformation, 12: 27S31. Pettorelli. N., Vik, J. O., Mysterud. A., Gaillard. J. M., Tucker, C. J., and Stenseth, N. C., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Jour. Trends in ecology and evolution. 20(9): 503–510. Shahriari, A., Gholami, H., Fakhireh, A., Arkhi, S., and Nouri, S., 2010. Comparison of different methods for monitoring vegetation coverage in desert area of Dehloran Ein Khosh using RS and GIS. Geomatics National Conference. Iran Mapping Organization. (In Persian). Swain, P. H., and Davis, S. M., 1978. Remote Sensing: the Quantitative Approach (New York: McGraw-Hill). Wang, F., 1990. Fuzzy supervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 28: 194- 201. Xu, M., Watanachaturaporn, P., Varshney, P. K. and Arora, M. K., 2005. Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ., 97: 322- 336. Yang, C., Prasher, S. O., Enright, P., Madramootoo, C., Burgess, M., Goel, P. K., and Callum, I., 2003. Application of decision tree technology for image classification using remote sensing data. Agricultural Systems, 76: 1101–1117. Zambon, M., Lawrence, R., Bunn, A., and Powell, S., 2006. Effect of alternative splitting rules on image processing using classification tree analysis. Photogrammetric Engineering and Remote Sensing, 72(1): 25–30. | ||
آمار تعداد مشاهده مقاله: 10,199 تعداد دریافت فایل اصل مقاله: 8,890 |