A PSO-Based Static Synchronous Compensator Controller for Power System Stability Enhancement

Meisam Mahdavi¹, Ali Nazari², Vahid Hosseinnezhad³, Amin Safari²
1. School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
 Email: me.mahdavi@ut.ac.ir (Corresponding author)
2. Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
3. Sama Technical and Vocational Training College, Islamic Azad University, Khoy Branch, Khoy, Iran.

ABSTRACT
In this paper power system stability enhancement through static synchronous compensator (STATCOM) based controller is investigated. The potential of the STATCOM supplementary controllers to enhance the dynamic stability is evaluated. The design problem of STATCOM based damping controller is formulated as an optimization problem according to the eigenvalue based objective function that is solved by a particle swarm optimization (PSO) algorithm. The controllers are tuned to simultaneously shift the lightly damped and un-damped electro-mechanical modes of machine to a prescribed zone in the s-plane. The results analysis reveals that the designed PSO based STATCOM damping controller has an excellent capability in damping the power system low frequency oscillations and enhance greatly the dynamic stability of the power system.

KEYWORDS: STATCOM, Particle swarm optimization, damping controller, Dynamic stability.

1. INTRODUCTION

Intensive progress in power electronics has enabled application of flexible AC transmission system (FACTS) devices in high voltage transmission networks. The main aim of FACTS devices is normally steady-state control of a power system but, due to their fast response, FACTS can also be used for power system stability enhancement through improved damping of power swings [1]. Static synchronous compensator (STATCOM) is a member of FACTS family that is connected in shunt with the system. It replaces the bulky reactive elements of conventional static var compensator (SVC) by a solid-state synchronous voltage source. The STATCOM is based on the principle that a voltage-source inverter generates a controllable AC voltage source behind a transformer-leakage reactance so that the voltage difference across the reactance produces active and reactive power exchange between the STATCOM and the transmission network. Several trials have been reported in the literature to dynamic models of STATCOM in order to design suitable controllers for power flow, voltage and
damping controls [2, 3]. Wang [4] presents the establishment of the linearized Phillips–Heffron model of a power system installed with a STATCOM. Wang has not presented a systematic approach for designing the damping controllers. Further, it seems no effort have been made to identify the most suitable STATCOM control parameter, in order to arrive at a robust damping controller. Intelligent controllers have the potential to overcome the above-mentioned problems. Fuzzy-logic-based controllers have, for example, been used for controlling a STATCOM [5]. The performance of such controllers can further be improved by adaptively updating their parameters. Although using the robust control methods [6], the uncertainties are directly introduced to the synthesis, but due to the large model order of power systems the order resulting controller will be very large in general, which is not feasible because of the computational economical difficulties in implementing. The PSO algorithm can be used to solve many of the same kinds of problems as GA and does not suffer from of GA’s difficulties. The PSO is a novel population based meta heuristic, which utilize the swarm intelligence generated by the cooperation and competition between the particle in a swarm and has emerged as a useful tool for engineering optimization. Unlike the other heuristic techniques, it has a flexible and well-balanced mechanism to enhance the global and local exploration abilities. This algorithm has also been found to be robust in solving problems featuring non-linearity, non-differentiability and high-dimensionality [7-11].

In this study, the problem of robust STATCOM based damping controller design is formulated as an optimization problem and PSO technique is used to solve it. The aim of the optimization is to search for the optimum controller parameter settings that improve the dynamic system performance. The effectiveness of the proposed controller is demonstrated through eigenvalue analysis and nonlinear time-domain simulation studies to damp low frequency oscillations under different operating conditions. Results evaluation shows that the proposed damping controller achieves good robust performance for a wide range of operating conditions and disturbance.

2. OVERVIEW OF PARTICLE SWARM OPTIMIZATION

The PSO method is a population-based one and is described by its developers as an optimization paradigm, which models the social behavior of birds flocking or fish schooling for food. Therefore, PSO works with a population of potential solutions rather than with a single individual [7]. Its key concept is: potential solutions are flown through hyperspace and are accelerated towards better or optimum solutions. Its paradigm can be implemented in simple form of computer codes and is computationally inexpensive in terms of both memory requirements and speed. The higher dimensional space calculations of the PSO concept are performed over a series of time steps. The population is responding to the quality factors of the previous best individual values and the previous best group values. It has also been found to be robust in solving problem featuring non-linearity, non-differentiability and high-dimensionality [8-10].

The PSO starts with a population of random solutions “particles” in a D-dimension space.
The ith particle is represented by $X_i = (x_{i1}, x_{i2}, \ldots, x_{id})$. Each particle keeps track of its coordinates in hyperspace, which are associated with the fittest solution it has achieved so far. The value of the fitness for particle i (pbest) is also stored as $P_i = (p_{i1}, p_{i2}, \ldots, p_{id})$. The global version of the PSO keeps track of the overall best value (gbest), and its location, obtained thus far by any particle in the population. The PSO consists of, at each step, changing the velocity of each particle toward its pbest and gbest according to Eq. (1). The velocity of particle i is represented as $V_i = (v_{i1}, v_{i2}, \ldots, v_{id})$. Acceleration is weighted by a random term, with separate random numbers being generated for acceleration toward pbest and gbest. The position of the ith particle is then updated according to Eq. (2) [11]:

$$v_{id} = w \times v_{id} + c_1 \times \text{rand} \times (P_{id} - x_{id}) + c_2 \times \text{rand} \times (P_{gd} - x_{id})$$

$$x_{id} = x_{id} + c v_{id}$$

Where, P_{id} and P_{gd} are pbest and gbest. The positive constants c_1 and c_2 are the cognitive and social components that are the acceleration constants responsible for varying the particle velocity towards pbest and gbest, respectively. Variables r_1 and r_2 are two random functions based on uniform probability distribution functions in the range $[0, 1]$. The use of variable w is responsible for dynamically adjusting the velocity of the particles, so it is responsible for balancing between local and global searches, hence requiring less iteration for the algorithm to converge [7]. The following weighting function w is used in Eq. (1):

$$w = w_\text{max} - \frac{w_\text{max} - w_\text{min}}{\text{iter}_\text{max}}$$

Where, iter_max is the maximum number of iterations and iteration is the current number of iteration. The Eq. (3) presents how the inertia weight is updated, considering w_max and w_min are the initial and final weights, respectively [10]. Figure 1 shows the flowchart of the PSO algorithm.

![Flowchart of the proposed PSO technique](image)

3. DESCRIPTION OF CASE STUDY NETWORK

Figure 2 is a single machine infinite bus power (SMIB) system installed with a STATCOM. The synchronous generator is delivering power to the infinite-bus through a double circuit transmission line and a STATCOM. The system data is given in the Appendix. The system consists of a step down transformer (SDT) with a leakage reactance XSDT, a three-phase GTO-based voltage source converter, and a dc capacitor [4].

The VSC generates a controllable AC voltage source $v_L(t) - V_S \sin(\omega t - \phi)$ behind the leakage reactance. The voltage difference between the STATCOM bus AC voltage, $v_L(t)$
and \(v_o(t) \) produces active and reactive power exchange between the STATCOM and the power system, which can be controlled by adjusting the magnitude \(V_o \) and the phase \(\varphi \).

The dynamic relation between the capacitor voltage and current in the STATCOM circuit are expressed as [4]:

\[
T_{lo} - I_{lod} + j I_{log} \tag{4}
\]

\[
V_c = cV_d (\cos \varphi + j \sin \varphi) = cV_d \angle \varphi \tag{5}
\]

\[
\dot{V}_d = \frac{I_o}{C_d} = \frac{c}{C_d} (I_{lod} \cos \varphi - I_{log} \sin \varphi) \tag{6}
\]

Where for the PWM inverter \(c = mk \) and \(k \) is the ratio between AC and DC voltage depending on the inverter structure, \(m \) is the modulation ratio defined by the PWM and the phase \(c \) is also defined by the PWM. The \(C_d \) is the dc capacitor value and \(I_{dc} \) is the capacitor current while \(I_{lod} \) and \(I_{log} \) are the \(d \)- and \(q \)-components of the STATCOM current, respectively.

The dynamics of the generator and the excitation system are expressed through a third order model given as [10]:

\[
\dot{E}_q = -E_q + K_q (V_{sef} - V) / T_s \tag{10}
\]

The expressions for the power output, terminal voltage, and the \(d \)- and \(q \)-axes currents in the transmission line and STATCOM, respectively, are:

\[
I_{sd} = \frac{(1 + \frac{X_{Lw}}{X_{SOT}}) e'_q - \frac{X_{Lw}}{X_{SOT}} m V_d \sin \varphi - V_o \cos \varphi}{X_{Ld} + \frac{X_{Lw}}{X_{SOT}} + (1 + \frac{X_{Lw}}{X_{SOT}}) X'_d} \tag{11}
\]

\[
I_{sq} = \frac{\frac{X_{Lw}}{X_{SOT}} m V_d \cos \varphi + V_o \sin \varphi}{X_{Ld} + \frac{X_{Lw}}{X_{SOT}} + (1 + \frac{X_{Lw}}{X_{SOT}}) X'_q} \tag{12}
\]

\[
I_{ld} = \frac{\frac{X_{Lw}}{X_{SOT}} m V_d \cos \varphi + V_o \sin \varphi}{X_{Ld} + \frac{X_{Lw}}{X_{SOT}} + (1 + \frac{X_{Lw}}{X_{SOT}}) X'_d} \tag{13}
\]

\[
I_{lq} = \frac{m V_d \cos \varphi - (x'_d + X_{Ld}) I_{lad} - m V_d \sin \varphi}{X_{SOT}} \tag{14}
\]

Where, \(X_{Ld}, x'_d \) and \(x'_q \) are the transmission line reactance, \(d \)-axis transient reactance, and \(q \)-axis reactance, respectively. A linear dynamic model is obtained by linearizing the nonlinear model round an operating condition. The linearized model of power system as shown in Fig.1 is given as follows:

\[
\Delta \delta = \frac{\dot{\delta}}{\omega} \Delta \omega, \quad \delta = \omega (\omega - 1) \tag{7}
\]

\[
\Delta \dot{\omega} = \frac{\Delta \omega}{M} \Delta \delta + \Delta P_c / M, \tag{15}
\]

\[
\Delta E' = \frac{\Delta E_q / T_A}{\Delta P_e / T_A} \tag{16}
\]

\[
\Delta E_{fd} = (K_{dc} \Delta \delta + K_{dc} \Delta E_{q} / T_A) / T_A \tag{17}
\]

\[
\Delta E_{d} = K_{dc} \Delta \delta + K_{dc} \Delta E_{q} / T_A \tag{18}
\]

\[
\Delta E_{d} = K_{dc} \Delta \delta + K_{dc} \Delta E_{q} / T_A \tag{19}
\]

\[
\Delta P_e = K_{pc} \Delta \delta + K_{pc} \Delta E_{q} / T_A \tag{20}
\]

\[
\Delta E_{q} = K_{qdc} \Delta \delta + K_{qdc} \Delta E_{q} / T_A \tag{21}
\]

\[
\Delta \dot{\omega} = \frac{\Delta \omega}{M} \Delta \delta + \Delta P_c / M, \tag{16}
\]

\[
\Delta \dot{\omega} = \frac{\Delta \omega}{M} \Delta \delta + \Delta P_c / M, \tag{16}
\]

\[
\Delta E' = \frac{\Delta E_q / T_A}{\Delta P_e / T_A} \tag{16}
\]

\[
\Delta E_{fd} = (K_{dc} \Delta \delta + K_{dc} \Delta E_{q} / T_A) / T_A \tag{17}
\]

\[
\Delta E_{d} = K_{dc} \Delta \delta + K_{dc} \Delta E_{q} / T_A \tag{18}
\]

\[
\Delta E_{d} = K_{dc} \Delta \delta + K_{dc} \Delta E_{q} / T_A \tag{19}
\]

\[
\Delta P_e = K_{pc} \Delta \delta + K_{pc} \Delta E_{q} / T_A \tag{20}
\]

\[
\Delta E_{q} = K_{qdc} \Delta \delta + K_{qdc} \Delta E_{q} / T_A \tag{21}
\]
\[
\Delta V_t = K_5 \Delta \delta + K_6 \Delta E_q^i + K_{vdc} \Delta V_{dc} + K_{vc} \Delta \epsilon + K_v \Delta \phi,
\]

(22)

\(K_1, K_2 ... K_9, K_{pu}, K_qu\) and \(K_w\) are linearization constants. The block diagram of the linearized dynamic model of the SMIB power system with STATCOM is shown in Fig. 3.

\[J = \sum_{j=1}^{Np} \left(\sigma_0 - \sigma_j \right)^2 \]

(23)

Where, \(\sigma_{ij}\) is the real part of the ith eigenvalue of the jth operating point. The value of \(NP\) is the total number of operating points for which the optimization is carried out. The value of \(\sigma_0\) determines the relative stability in terms of damping factor margin provided for constraining the placement of eigenvalues during the process of optimization. The proposed approach employs PSO to solve this optimization problem and searches for an optimal set of controller parameters. The optimization of controller parameters is carried out by evaluating the objective function as given in Eq. (23), which considers a multiple of operating conditions. The operating conditions are given in Table 1.

Figure 6 illustrates the block diagram of STATCOM ac voltage PI controller with a power oscillation-damping stabilizer. In our implementation, the value of \(\sigma_0\) is taken as \(-2\).

In order to acquire better performance, number of particle, particle size, number of iteration, \(c_1, c_2,\) and \(c\) is chosen as 30, 7, 50, 2, 2 and 1, respectively. In addition, the inertia weight, \(w\), is linearly decreasing from 0.9 to 0.4. The final values of the optimized parameters with objective function, \(J\), are given in Table 2.

![Fig. 3. Modified Heffron–Phillips transfer function model.](image)

![Fig. 4. Power oscillation damping controller](image)
damping with the proposed PSO based STATCOM damping controller is significantly improved.

Table 3. System eigenvalues with and without controller.

<table>
<thead>
<tr>
<th>Type of controller</th>
<th>Nominal</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without controller</td>
<td>0.196 ± i3.389,- 0.058</td>
<td>0.256 ± i4.49, -0.06</td>
</tr>
<tr>
<td>C based controller</td>
<td>-97.87, -2.761, -3.3718, -96.643</td>
<td>0.609, 0.90</td>
</tr>
<tr>
<td>φ based controller</td>
<td>-3.095, -1.404, -2.966, -1.316</td>
<td>-131.62, -0.1086, -133.37, -0.1094</td>
</tr>
<tr>
<td>φ based controller</td>
<td>-5.712± i2.983, -5.908± i3.784, 0.886, 0.84</td>
<td></td>
</tr>
<tr>
<td>φ based controller</td>
<td>-2.106± i3.964, -2.089± i3.73, 0.469, 0.49</td>
<td></td>
</tr>
<tr>
<td>φ based controller</td>
<td>-2.62, -0.1013, -2.623, -0.1012</td>
<td>-96.582, -96.644</td>
</tr>
</tbody>
</table>

5.2. Nonlinear time domain simulation

In this section, the performance of the proposed controller under transient conditions is verified by applying a 6-cycle three-phase fault at t=1 sec, at the middle of the L3 transmission line. Permanent tripping of the faulted line clears the fault. The system response to this disturbance is shown in Fig. 7. It can be seen that the proposed controller has good performance in damping low frequency oscillations and stabilizes the system quickly.

5. CONCLUSIONS

A method of designing a power oscillation-damping controller for a STATCOM has been proposed. The design problem of the controller is converted into an optimization problem, which is solved by a PSO technique. The robust design has been found to be very effective for a range of operating conditions.
of the power system. The eigenvalues analysis and nonlinear time domain simulation results show the robustness of the proposed controller and their ability to provide good damping of low frequency oscillations. Moreover, the φ-based stabilizer provides better damping characteristics and enhances greatly the first swing stability compared to the C-based stabilizer. Results demonstrate that the overshoot, undershoot, settling time and speed deviations of the machine are greatly reduced by applying the proposed methodology based tuned controller.

APPENDIX

The nominal parameters are listed in Table 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (MW)</td>
<td>8</td>
</tr>
<tr>
<td>$T_{0.9}$ (s)</td>
<td>6.54</td>
</tr>
<tr>
<td>X_d (pu)</td>
<td>0.63</td>
</tr>
<tr>
<td>$X_{0.9}$ (pu)</td>
<td>0.33</td>
</tr>
<tr>
<td>D (pu)</td>
<td>0.05</td>
</tr>
<tr>
<td>K_o</td>
<td>25</td>
</tr>
<tr>
<td>T_o (s)</td>
<td>0.05</td>
</tr>
<tr>
<td>X_i (pu)</td>
<td>0.1</td>
</tr>
<tr>
<td>$X_{0.1}$ (pu)</td>
<td>0.1</td>
</tr>
<tr>
<td>V_{dc} (pu)</td>
<td>1</td>
</tr>
<tr>
<td>C_{dc} (pu)</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0.25</td>
</tr>
<tr>
<td>φ (°)</td>
<td>52</td>
</tr>
<tr>
<td>K_s</td>
<td>1</td>
</tr>
<tr>
<td>T_s (s)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

REFERENCES

