تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,625 |
تعداد مشاهده مقاله | 78,456,203 |
تعداد دریافت فایل اصل مقاله | 55,471,010 |
Numerical solution of Fredholm integral-differential equations on unbounded domain | ||
Journal of Linear and Topological Algebra | ||
مقاله 5، دوره 04، شماره 01، اردیبهشت 2015، صفحه 43-52 اصل مقاله (135.63 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
M. Matinfar* 1؛ A. Riahifar2 | ||
1Department of Mathematics, University of Mazandaran, Babolsar, PO. Code 47416-95447, Iran | ||
2Department of Mathematics, Islamic Azad University, Chalus Branch, PO. Code 46615-397, Iran | ||
چکیده | ||
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultilized to reduce the (FIDEs) to the solution of a system of linear algebraic equations with unknown generalized Laguerre coefficients. In addition, two examples are given to demonstrate the validity, efficiency and applicability of the technique. | ||
کلیدواژهها | ||
Fredholm integro-differential equations؛ unbounded domain؛ generalized Laguerre polynomials؛ Operational matrices | ||
مراجع | ||
[1] A. D. Polyanin, A. V. Manzhirov, Handbook of integral equations, Boca Raton, Fla., CRC Press, 1998.
[2] D. G. Sanikidze, On the numerical solution of a class of singular integral equations on an infinite interval, Differential Equations. 41(9) (2005), pp. 1353–1358.
[3] N. I. Muskhelishvili, Singular integral equations, Noordhoff, Holland, 1953.
[4] V. Volterra, Theory of functionnals of integro-differential equations, Dover, New York, 1959.
[5] F. M. Maalek Ghaini, F. Tavassoli Kajani, and M. Ghasemi, Solving boundary integral equation using Laguerre polynomials, World Applied Sciences Journal. 7(1) (2009), pp. 102–104.
[6] N. M. A. Nik Long, Z. K. Eshkuvatov, M. Yaghobifar, and M. Hasan, Numerical solution of infinite boundary integral equation by using Galerkin method with Laguerre polynomials, World Academy of Science, Engineering and Technology. 47 (2008), pp. 334–337.
[7] D. Funaro, Approximations of Differential Equations, Springer-Verlag, 1992.
[8] J. Shen, T. Tang, and L. L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer, 2011.
[9] J. Shen, L. L. Wang, Some Recent Advances on Spectral Methods for Unbounded Domains, J. Commun. Comput. Phys. 5 (2009), pp. 195–241. | ||
آمار تعداد مشاهده مقاله: 9,413 تعداد دریافت فایل اصل مقاله: 6,386 |