تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,800,521 |
تعداد دریافت فایل اصل مقاله | 54,843,330 |
G-Frames, g-orthonormal bases and g-Riesz bases | ||
Journal of Linear and Topological Algebra | ||
مقاله 3، دوره 02، شماره 01، خرداد 2013، صفحه 25-33 اصل مقاله (128.79 K) | ||
نوع مقاله: Research Paper | ||
نویسنده | ||
S. S. Karimizad | ||
Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran | ||
چکیده | ||
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator. | ||
کلیدواژهها | ||
G-frames؛ G-Bessel sequences؛ G-orthonormal bases | ||
مراجع | ||
[1] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, (2003). [2] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27(1986), 1271-1283. [3] R. J. Duffin and A. C. Schaeer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72,(2), (1952), 341-366. [4] M. Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl. 289 (2004), 180-199. [5] D. Gabor, Theory of communications, J. Inst. Electr. Eg. London. 93(III), (1946), 429-457. [6] W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. (2006), 322, 437-452. [7] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, (2001). | ||
آمار تعداد مشاهده مقاله: 5,608 تعداد دریافت فایل اصل مقاله: 3,317 |