Approximation of the n-th Root of a Fuzzy Number by Polynomial Form Fuzzy Numbers

Majid Amirfakhrian

aDepartment of Mathematics, Islamic Azad University, Central Tehran Branch, PO. Code 14168-94351, Iran.

Received 10 March 2012; accepted 11 April 2013

Abstract

In this paper we introduce the root of a fuzzy number, and we present an iterative method to find it, numerically. We present an algorithm to generate a sequence that can be converged to n-th root of a fuzzy number.

Key words: Nearest Approximation, Fuzzy Numbers, Fuzzy Polynomial, Root of Fuzzy Number.

2010 AMS Mathematics Subject Classification : 12E12; 39B22; 65H05.

* Corresponding’s E-mail: amirfakhrian@iauctb.ac.ir(M.Amirfakhrian)
1 Introduction

Since 1965 where Zadeh [28] presented fuzzy logic, up to now, this logic is applicable in many fields of sciences. An equation may appears in many fields of sciences. Some works have been done on equations and relational equations [27,24,26]. Recently Zadeh introduced some properties of a fuzzy equation [29].

There are many applications that we need to find an n-th root of a fuzzy number. One my reduce the problem of solving a fuzzy algebraic equation to finding the n-th root of a fuzzy number. Some fuzzy equations were checked in [8–13]. There are some works on fuzzy equations in [12]. All these methods compute the roots of an algebraic fuzzy equation analytically but there aren’t any analytically solution for algebraic fuzzy equations with degree greater than 3. In the recent years we introduced a new method to solve an algebraic equations, numerically [5,6].

In this paper we want to find the n-th root of a fuzzy number, numerically.

The structure of this paper is as follows. In Section 2 we introduce an algebraic fuzzy equation of degree n, with crisp coefficients and fuzzy variable. In Section 3 an algorithm is presented to find the n-th root of a fuzzy number with nonnegative root, numerically. In Section 4 we extend the method for negative roots a fuzzy number. In Section 5 we use the algorithm for the roots of a general fuzzy number by approximating the both right hand side and the roots. There are some examples in Section 6.

2 Preliminaries

Let $F(\mathbb{R})$ be the set of all real fuzzy numbers (which are normal, upper semicontinuous, convex and compactly supported fuzzy sets).
The parametric form of a fuzzy number is shown by \(\tilde{v} = (v(r), \overline{v}(r)) \), where functions \(v(r) \) and \(\overline{v}(r) \); \(0 \leq r \leq 1 \) satisfy the following requirements [21,25]:

1. \(v(r) \) is monotonically increasing left continuous function.
2. \(\overline{v}(r) \) is monotonically decreasing left continuous function.
3. \(v(r) \leq \overline{v}(r) , \ 0 \leq r \leq 1. \)

Let \(\tilde{v} = (v(r), \overline{v}(r)), \ \tilde{u} = (u(r), \overline{u}(r)) \in F(\mathbb{R}) \). Some results of applying fuzzy arithmetic on fuzzy numbers \(\tilde{v} \) and \(\tilde{u} \) are as follows:

- \(x > 0 : x\tilde{v} = (xv(r), x\overline{v}(r)); \)
- \(x < 0 : x\tilde{v} = (x\overline{v}(r), xv(r)); \)
- \(\tilde{v} + \tilde{u} = (v(r) + u(r), \overline{v}(r) + \overline{u}(r)); \)
- \(\tilde{v} - \tilde{u} = (v(r) - \overline{u}(r), \overline{v}(r) - u(r)); \)

A fuzzy number with left right (LR) form is introduced in [16].

Definition 2.1 A fuzzy set \(\tilde{v} \) is called a generalized left right fuzzy number, if its membership function satisfy the following [1]

\[
\mu_{\tilde{v}}(x) = \begin{cases}
L_{\tilde{v}}(x) , & l \leq x \leq m_l, \\
1 , & m_l \leq x \leq m_r, \\
R_{\tilde{v}}(x) , & m_r \leq x \leq r, \\
0 , & \text{otherwise},
\end{cases}
\]

where \(L_{\tilde{v}}(x) \) is the left spread membership function that is an increasing continuous function on \([l, m_l]\) and \(R_{\tilde{v}}(x) \) is the right spread membership function that is a decreasing continuous function on \([m_r, r]\).

A fuzzy number \(\tilde{v} \) is nonnegative (non-positive) if for \(x < 0 \ (x > 0) \) we have \(\mu_{\tilde{v}}(x) = 0 \), equivalently if \(v \geq 0 \ (\overline{v} \leq 0) \) on \([0, 1]\). Also a fuzzy number \(\tilde{v} \) is positive (negative) if for \(x \leq 0 \ (x \geq 0) \) we have \(\mu_{\tilde{v}}(x) = 0 \), equivalently if \(v > 0 \ (\overline{v} < 0) \) on \([0, 1]\). So we have
If \(\tilde{v} \) and \(\tilde{u} \) be nonnegative fuzzy numbers then
\[
\tilde{v} \tilde{u} = (\underline{v}(r) \underline{u}(r), \overline{v}(r) \overline{u}(r)).
\]
If \(\tilde{v} \) and \(\tilde{u} \) be non-positive fuzzy numbers then
\[
\tilde{v} \tilde{u} = (\overline{v}(r) \underline{u}(r), \underline{v}(r) \overline{u}(r)).
\]

Definition 2.2 \(\tilde{P}_n(\tilde{x}) \) is a fuzzy polynomial from degree at most
\(n \geq 1 \) with crisp coefficients, if there are some crisp numbers
\(a_1, \ldots, a_n \), such that,
\[
\tilde{P}_n(\tilde{x}) = \sum_{j=1}^{n} a_j \tilde{x}^j. \tag{2.1}
\]

Let \(n \) be a positive integer. An algebraic fuzzy equation with fuzzy
variable and crisp coefficients from degree \(n \), is defined by
\[
a_n \tilde{x}^n + \ldots + a_1 \tilde{x} = \tilde{b}, \tag{2.2}
\]
where \(a_1, \ldots a_n \in \mathbb{R} \) and \(a_n \neq 0 \). i.e. an equation \(\tilde{P}_n(\tilde{x}) = \tilde{b} \), where
\(\tilde{P}_n(\tilde{x}) \) is a polynomial from degree \(n \).

Definition 2.3 We say that a fuzzy number \(\tilde{v} \) has "m-degree polynomial form" if there exist two polynomials
\(p_m(r) \) and \(q_m(r) \), from degree at most \(m \); such that
\(\tilde{v} = (p_m(r), q_m(r)) \).

Let \(PF_m(\mathbb{R}) \) be the set of all \(m \)-degree polynomial form fuzzy
numbers.

It has been shown in [1] that some kind of generalized LR fuzzy
numbers can be approximated by unique \(m \)-degree polynomial
form fuzzy numbers.

Let \(F : \mathbb{R}^s \rightarrow \mathbb{R}^d \) be a function such that maps \(Y^T = (y_1, \ldots, y_s) \)
to \(F^T(Y) = (F_1(Y), \ldots, F_d(Y)) \), where \(d \geq s \). To solve the equation
\(F(Y) = 0 \) by Gauss-Newton method [19,20] we take \(A(Y) = \left[\frac{\partial F_i(Y)}{\partial y_j} \right], i = 1, \ldots, d \) and \(j = 1, \ldots, s \). Now let \(Y^{(0)} \) be an
initial vector. Thus to improve this guess one must solve the system
\[
A(Y^{(k)}) H^{(k)} = -F(Y^{(k)}) \] and taking \(Y^{(k+1)} = Y^{(k)} + H^{(k)} \). We solve
this system by least square method as follows
\[A(Y^{(k)})^T A(Y^{(k)}) H^{(k)} = -A(Y^{(k)})^T F(Y^{(k)}). \]

Some convergence conditions and uniqueness of the solution were proposed in [14,15,23].

3 Roots of a fuzzy number

In this section we consider the following equation
\[\tilde{x}^n = \tilde{b}, \quad (3.1) \]
where \(\tilde{x} \) is a nonnegative single modal value fuzzy number belonging to \(PF_m(\mathbb{R}) \), and \(\tilde{b} \) is a single modal value fuzzy number belonging to \(PF_l(\mathbb{R}) \), such that \(l \leq nm \), also we have
\[x = \sum_{i=0}^{m} \alpha_i r_i, \quad \tau = \sum_{i=0}^{m} \beta_i r_i \]
and
\[\tilde{b} = \sum_{i=0}^{l} b_i r_i, \quad \bar{b} = \sum_{i=0}^{l} \bar{b}_i r_i. \]

For the equation (3.1) we have
\[\tilde{x}^n = \tilde{b}, \]
\[\bar{x}^n = \bar{b}. \]
Thus we have
\[\tilde{x}^n = \left(\sum_{i=0}^{m} \alpha_i r_i \right)^n = \sum_{i=0}^{l} b_i r_i, \quad (3.2) \]
\[\bar{x}^n = \left(\sum_{i=0}^{m} \beta_i r_i \right)^n = \sum_{i=0}^{l} \bar{b}_i r_i. \quad (3.3) \]
Let for $i = 0, 1, \ldots, nm$; L_i and U_i be the coefficients of r^i in (3.2) and (3.3) respectively, therefore

$$\sum_{i=0}^{nm} L_i(\alpha_0, \ldots, \alpha_m, \beta_0, \ldots, \beta_m)r^i = 0,$$

$$\sum_{i=0}^{nm} U_i(\alpha_0, \ldots, \alpha_m, \beta_0, \ldots, \beta_m)r^i = 0,$$

thus

$$L_i(\alpha_0, \ldots, \alpha_m, \beta_0, \ldots, \beta_m) = 0, \quad i = 0, 1, \ldots, nm,$$

$$U_i(\alpha_0, \ldots, \alpha_m, \beta_0, \ldots, \beta_m) = 0, \quad i = 0, 1, \ldots, nm.$$

Defining

$$Z(\alpha_0, \ldots, \alpha_m, \beta_0, \ldots, \beta_m) = \sum_{i=0}^{m} \alpha_i - \sum_{i=0}^{m} \beta_i,$$ \hspace{1cm} (3.4)

we have

$$\begin{cases}
L_i(\alpha_0, \ldots, \alpha_m, \beta_0, \ldots, \beta_m) = 0 \quad , \quad i = 0, 1, \ldots, nm, \\
U_i(\alpha_0, \ldots, \alpha_m, \beta_0, \ldots, \beta_m) = 0 \quad , \quad i = 0, 1, \ldots, nm, \\
Z(\alpha_0, \ldots, \alpha_m, \beta_0, \ldots, \beta_m) = 0,
\end{cases}$$ \hspace{1cm} (3.5)

which is a system of nonlinear equations with $d = 2nm+3$ equations and $s = 2m + 2$ unknowns. We solve this system by an iterative Gauss-Newton method.
Defining

\[
A = \begin{pmatrix}
\frac{\partial L_0}{\partial \alpha_0} & \cdots & \frac{\partial L_0}{\partial \alpha_m} & \cdots & \frac{\partial L_0}{\partial \beta_m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\frac{\partial L_{nm}}{\partial \alpha_0} & \cdots & \frac{\partial L_{nm}}{\partial \alpha_m} & \cdots & \frac{\partial L_{nm}}{\partial \beta_m} \\
\frac{\partial U_0}{\partial \alpha_0} & \cdots & \frac{\partial U_0}{\partial \alpha_m} & \cdots & \frac{\partial U_0}{\partial \beta_m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\frac{\partial U_{nm}}{\partial \alpha_0} & \cdots & \frac{\partial U_{nm}}{\partial \alpha_m} & \cdots & \frac{\partial U_{nm}}{\partial \beta_m} \\
\frac{\partial Z}{\partial \alpha_0} & \cdots & \frac{\partial Z}{\partial \alpha_m} & \cdots & \frac{\partial Z}{\partial \beta_m}
\end{pmatrix},
\]

\[
B = -\begin{pmatrix}
L_0 \\
\vdots \\
L_{nm} \\
U_0 \\
\vdots \\
U_{nm} \\
Z
\end{pmatrix},
Y = \begin{pmatrix}
\alpha_0 \\
\vdots \\
\alpha_m \\
\beta_0 \\
\vdots \\
\beta_m
\end{pmatrix},
H = \begin{pmatrix}
h_1 \\
h_2 \\
\vdots \\
h_{2m+2}
\end{pmatrix},
\]

we have

\[AH = B. \tag{3.6}\]

In the above system we used \(A\) and \(B\) instead of \(A(Y)\) and \(B(Y)\), respectively. We solve this system with an initial vector \(Y^{(0)}\), by least square method and then we improve this guess. We find the sequence \(\{Y^{(k)}\}\) as follows. With an initial vector \(Y^{(0)}\), in iteration \(k\), we compute \(A^{(k)}\) and \(B^{(k)}\) and solve \(A^{(k)}H^{(k)} = B^{(k)}\) by least square method as follows

\[A^{(k)^T}A^{(k)}H^{(k)} = A^{(k)^T}B^{(k)}, \tag{3.7}\]

and improve the solution by

\[Y^{(k+1)} = Y^{(k)} + H^{(k)}. \tag{3.8}\]
Again we used $A^{(k)}$ and $B^{(k)}$ instead of $A(Y^{(k)})$ and $B(Y^{(k)})$, respectively.

If $\{Y^{(k)}\}$ converges to a Y^*; then \tilde{x}^* is a Gauss-Newton solution of (2.2) where

$$x^* = \sum_{i=0}^{n} \alpha_i^* r^i, \quad \bar{x}^* = \sum_{i=0}^{n} \beta_i^* r^i.$$

Thus we use the following algorithm:

ALGORITHM

(1) Specify an initial vector $Y^{(0)}$.
(2) $k = 0$.
(3) Compute $A^{(k)}$ and $B^{(k)}$.
(4) Compute $H^{(k)}$ from $A^{(k)T} A^{(k)} H^{(k)} = A^{(k)T} B^{(k)}$.
(5) $Y^{(k+1)} = Y^{(k)} + H^{(k)}$.
(6) If the convergence condition is yield, then end.
(7) $k = k + 1$, and go to step 3.

By a lemma we show that for $n = 1$, the matrix $A^T A$ is nonsingular.

Lemma 3.1 Let $n = 1$ i.e. $\tilde{x} = \tilde{b}$, where $\tilde{x}, \tilde{b} \in PF_m(\mathbb{R})$. In each iteration, we have

$$A^T A = I_{2m+2} + V,$$

and

$$(A^T A)^{-1} = I_{2m+2} - \frac{1}{(2m + 3)} V,$$

such that

$$V = \begin{bmatrix} \Psi & -\Psi \\ -\Psi & \Psi \end{bmatrix},$$

where $\Psi = 11^T$, such that for $i = 1, 2, \cdots, m + 1$; $1_i = 1$.

Proof. The proof is a result of Lemma 3.1 in [6]. ■
For the matrix defined above we have $|A^TA| = (2m + 3)$ [6].

By the following Theorem we show that for a system of linear equations, the sequence of Gauss-Newton method, will be converged to the exact solution at the first iteration, with any initial vector.

Theorem 3.1 [6], Let K be a $d \times s$ matrix where $d > s$ and the linear system of equations $KY = L$ has a unique solution. The sequence of Gauss-Newton method will be converged to the exact solution of a linear system of equations at the first iteration with any initial vector.

Proof. From Lemma 3.1, A^TA is nonsingular and from Theorem 3.1 the proof is completed. ■

Theorem 3.2 Let $n = 1$ i.e. $\hat{x} = \hat{b}$, where $\hat{x}, \hat{b} \in PF_m(\mathbb{R})$. The equation has a unique root and with any initial guess, the root will be obtained at the first iteration.

Proof. From Lemma 3.1, A^TA is nonsingular and from Theorem 3.1 the proof is completed. ■

Theorem 3.3 If the equation is crisp then the sequence obtains from the following recurrence equation:

$$x_{k+1} = \left(\frac{n-1}{n}\right)x_k + \frac{b}{nx_k^{n-1}}. \quad (3.9)$$

Proof. The proof is a direct consequence of Theorem 3.4 [6]. ■

Lemma 3.2 If the fuzzy equation (3.1) has a root \hat{x}^* then $[\hat{x}^*]^1$ is a root of the equation $[\hat{x}^n]^1 = [\hat{b}]^1$.

Corollary 1 If the equation $[\hat{x}^n]^1 = [\hat{b}]^1$ has no root, then the fuzzy equation $\hat{x}^n = \hat{b}$ has no root too.

Lemma 3.3 [22], In each iteration the system (3.7) has a solution.

If the fuzzy equation $\hat{P}_n(x) = \hat{0}$ has a solution and the initial point is close to root of the equation then the method has a convergence sequence.$([14,15,19,20,23])$
In the triangular case \((m = 1)\), we have

\[
\bar{x} = \alpha_0 + \alpha_1 r, \quad \bar{x} = \beta_0 + \beta_1 r,
\]

thus

\[
\bar{x}^n = (\alpha_0 + \alpha_1 r)^n = \sum_{i=0}^{n} \binom{n}{i} \alpha_0^{n-i} \alpha_1^i r^i,
\]

therefore we have

\[
\begin{align*}
L_i(\alpha_0, \alpha_1, \beta_0, \beta_1) &= \binom{n}{i} \alpha_0^{n-i} \alpha_1^i - \bar{b}_0, \\
U_i(\alpha_0, \alpha_1, \beta_0, \beta_1) &= \binom{n}{i} \beta_0^{n-i} \beta_1^i - \bar{b}_0.
\end{align*}
\] (3.10)

4 Negative Roots

Let \(\tilde{x}\) be a negative fuzzy number. We know that For the equation (3.1) we have

\[
\begin{align*}
\tilde{x}^n &= \bar{b} \\
\tilde{x}^n &= \bar{b}.
\end{align*}
\]

Thus we have

\[
\begin{align*}
\tilde{x}^n &= \left(\sum_{i=0}^{m} \beta_i r^i \right)^n = \sum_{i=0}^{l} \bar{b}_ir^i, \quad (4.1) \\
\tilde{x}^n &= \left(\sum_{i=0}^{m} \alpha_i r^i \right)^n = \sum_{i=0}^{l} \bar{b}_ir^i, \quad (4.2)
\end{align*}
\]

and we have a system of nonlinear equations with \(d = 2nm + 3\) equations and \(s = 2m + 2\) unknowns same as, in which for \(i = 0, 1, \ldots, nm; L_i\) and \(U_i\) are the coefficients of \(r^i\) in (4.1) and (4.2), respectively.

One can do one of the followings:

i Using the Algorithm for two set of equations (3.2), (3.3) and (4.1), (4.2).
ii Solving the equation \(\sum_{j=1}^{n} a_j [\tilde{x}_j]^1 = [\tilde{b}]^1 \) and finding a root \(t \) of it. If \(t \geq 0 \) then using Algorithm for (3.2), (3.3), and otherwise using it for (4.1), (4.2).

5 Roots of a general fuzzy number

In this section we consider the following equation

\[
\tilde{x}^n = \tilde{b},
\]

(5.1)

where \(\tilde{x} \) and \(\tilde{b} \) are two single modal value LR fuzzy numbers.

In this case by considering two nonnegative integers \(m \) and \(l \leq nm \); one can approximate \(\tilde{b} \) by \(\tilde{b}_l \in PF_l(\mathbb{R}) \) (we can use the nearest approximation of \(b \) out of \(PF_i(\mathbb{R}) \) [1]) and use the proposed method for the following equation

\[
\tilde{x}_m^n = \tilde{b}_l,
\]

(5.2)

to find an approximation \(\tilde{x}_m^c \) of the exact solution of the main fuzzy equation (if exists) out of \(PF_m(\mathbb{R}) \).

Choosing \(m \) and \(l \) is depended on the shape of left and right spread functions, and their derivation order.

6 Numerical Examples

In this Section the presented examples have been solved by Mathematica 8.

Example 6.1 \(n = 2 \).

\[
\tilde{x}^2 = (1 + 4r + 4r^2, 16 - 8r + r^2).
\]
Fig. 1. positive root

Considering $\tilde{x} = (1, 1)$ and $m = 1$ after 7 iterations, we have

$\tilde{x} = (1.00000000000 + 2.00000000000r, 4.00000000000 − 1.00000000000r)$

Example 6.2 $n = 2$.

$$\tilde{x}^4 = (1 + 4r + 4r^2, 16 - 8r + r^2).$$

Considering $\hat{x} = (1, 1)$ and $m = 4$ after 11 iterations, we have

$\hat{x} = (\tilde{g}(r), \tilde{\pi}(r))$, where

$$g(r) = 1.0564 + 0.861r - 0.254r^2 + 0.1133r^3 - 0.0411r^4,$$

and $\pi(r) = 2.0000049 - 0.2499930r - 0.0156163r^2 - 0.0019404r^3 - 0.0002806r^4$.

See Figure 1.

Considering $\hat{x} = (-1, -1)$ and $m = 4$ after 11 iterations, we have

$\hat{x} = (\tilde{g}(r), \tilde{\pi}(r))$, where

$$g(r) = -1.0564 - 0.861r + 0.254r^2 - 0.1133r^3 + 0.0411r^4,$$

and $\pi(r) = -2.0000049 + 0.2499930r + 0.0156163r^2 + 0.0019404r^3 + 0.0002806r^4$.

See Figure 2.

Example 6.3 $n = 2$.

Considering the nearest 14-degree polynomial polynomial form of the right hand side, \(\tilde{x} = (1, 1) \) and \(m = 7 \) after 8 iterations, we have \(\tilde{x} = (\overline{x}(r), \overline{\tilde{x}}(r)) \), where

\[
\overline{x}(r) = 1 + 0.462098r + 0.106767r^2 + 0.0164457r^3 + 0.00189987r^4 + 0.000175599r^5 + 0.000013478r^6 + 9.42607 \times 10^{-7}r^7,
\]

and

\[
\overline{\tilde{x}}(r) = 2.51984 - 1.16441r + 0.269037r^2 - 0.0414405r^3 + 0.00478739r^4 - 0.000442468r^5 + 0.0000340191r^6 - 2.3661 \times 10^{-7}r^7.
\]

For this solution the infinity norm of the error functions for left and right hand sides are \(1.4788 \times 10^{-6} \) and \(1.0339 \times 10^{-6} \), respectively.

Example 6.4 \(n = 2 \).

\(\tilde{x}^2 = (-2 + r, -r) \).

Considering \(\hat{x} = (1, 1) \) and \(m = 1 \), we can see that the sequence converges to a solution that does not present a fuzzy number. (The 1-cut of this equation is a quadratic equation that has not any real root.)
7 Conclusion

In this paper a method presented to find the roots of a fuzzy number, numerically and an algorithm generates a sequence which will converge if the modal value function has a root.

The algorithm can be converged to a root of a fuzzy number. In general case we approximate the solution by a polynomial form fuzzy number. Choosing the degrees of approximated polynomial for right hand side and the solution, is depended on the shape of left and right spread functions, and their derivation order.

Acknowledge

The author would like to thank the anonymous reviewer for his/her valuable comments.

References

