تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,625 |
تعداد مشاهده مقاله | 78,463,989 |
تعداد دریافت فایل اصل مقاله | 55,476,120 |
Reinforcement Learning Based PID Control of Wind Energy Conversion Systems | ||
journal of Artificial Intelligence in Electrical Engineering | ||
مقاله 2، دوره 3، شماره 10، آذر 2014، صفحه 8-15 اصل مقاله (407.21 K) | ||
نویسندگان | ||
Mohammad Esmaeil akbari؛ Noradin Ghadimi | ||
چکیده | ||
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. The adaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinear characteristics of wind variations as plant input, wind turbine structure and generator operational behavior demand for high quality adaptive controller to ensure both robust stability and safe performance. Thus, a reinforcement learning algorithm is used for online tuning of PID coefficients in order to enhance closed loop system performance. In this study, at start the proposed controller is applied to two pure mathematical plants, and then the closed loop WECS behavior is discussed in the presence of a major disturbance. | ||
کلیدواژهها | ||
Adaptive control؛ WECS؛ reinforcement learning | ||
مراجع | ||
[1] K. Ogawa, N.Ymammura, M.Ishda, Study for Small Size Wind Power Generating System Using Switched Reluctance Generator, IEEE International Conference on Industrial Technology, 2006, pp. 1510-1515, [2] S. Manesis, Fuzzy Logic Control Development in SCADA Software Frameworks, International Review of Automatic Control, [3] F. D. Bianchi, H. De Battista and R. J. Mantz, “Wind Turbine Control Systems Principles, Modeling and Gain Scheduling Design” Springer- Verlag London Limited 2007. [4] Miguel Angel Mayosky, Gustavo I.E.Cancelo “Direct Adaptive Control of Wind Energy Conversion Systems Using Gaussian Networks” IEEE Trans on Neural Networks,Vol.10, pp.898- 906, July 1999 [5] M.Sedighizade, A.Rezazadeh “Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks” Proceedings of Academy of Science, Engineering and Technology Vol.27, pp.269-273. February 2008 [6] M.Sedighizade “Nonlinear Model Identification and Control of Wind Turbine Using Wavelets" Proceedings of the 2005 IEEE Conference on Control Applications Toronto, pp.1057-1062 Canada, 2005 [7] M. Kalantari, M. Sedighizadeh “Adaptive Self Tuning Control of Wind Energy Conversion Systems Using Morlet Mother Wavelet Basis Functions Networks”12th Mediterranean IEEE Conference on Control and Automation MED’04, Kusadasi, Turkey, 2004. [8] X. Zhang, D. XU and Y. LIU, “Predictive Functional Control of a Doubly Fed Induction Generator for Variable Speed Wind Turbines,” 5th World Congress on Intelligent Control and Automation, June 15- 19, Hangzhou. P.R. China, 2004. [9] Damien Ernst,et al ”Power System Stability Control: Reinforcement Learning Framework”IEEE Transaction on Power System,Vol.19,No.1,February 2004 [10] R. Bellman, ”Dynamic Programming”. Princeton, NJ: Princeton Univ. Press, 1957. [11] P.Puleston”Control strategies for wind energy conversion systems”Ph.D.dissertation,Univ.La Plata. Argentina 1997 | ||
آمار تعداد مشاهده مقاله: 931 تعداد دریافت فایل اصل مقاله: 1,356 |