تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,151 |
تعداد دریافت فایل اصل مقاله | 54,843,812 |
Homological dimensions of complexes of R-modules | ||
Theory of Approximation and Applications | ||
مقاله 8، دوره 9، شماره 1، مرداد 2015، صفحه 95-103 اصل مقاله (335.62 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
ن طیارزاده1؛ اسمعیل حسینی* 1؛ َش نیک نژاد2 | ||
1دانشگاه آزاد واحد گچساران ایران | ||
2دانشگاه آزاد واحد گچساران | ||
چکیده | ||
Let R be an associative ring with identity, C(R) be the category of com- plexes of R-modules and Flat(C(R)) be the class of all at complexes of R- modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−) have enough injectives in C(R). As an application, we prove that for each at complex F and each complex Y of R-modules, Exti (F,X)= 0, whenever R is n-perfect and i > n. | ||
مراجع | ||
[1] M. Ansari and E. Hosseini, The behavior of homological dimensions, Mathematics Scientic Journal Vol.7, No. 1, (2011), 1-10. [2] S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121, (1966), 223-235. [3] E. Enochs, J. Garca Rozas, Flat covers of complexes, J. Algebra, 210,(1998), 86-102. [4] P. Eklof, J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc, 33, no. 1 (2001), 44-51. [5] R. Gobel, S. Shelah, Cotorsion theories and spliters, Trans. Amer. Math. Soc. 352, No. 11, (2000), 5357-5379. 102 [6] L. Salce, Cotorsion theories for abelian groups, Symposia
Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977), Academic Press, London, 1979, pp.11-32. 11. [7] D. Simson, A remark on projective dimension of at modules, Math. Ann. 209 (1974), 181-182. | ||
آمار تعداد مشاهده مقاله: 496 تعداد دریافت فایل اصل مقاله: 508 |