تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,625 |
تعداد مشاهده مقاله | 78,464,086 |
تعداد دریافت فایل اصل مقاله | 55,476,148 |
Solution and stability analysis of coupled nonlinear Schrodinger equations | ||
Theory of Approximation and Applications | ||
مقاله 7، دوره 8، شماره 1، مرداد 2014، صفحه 71-84 اصل مقاله (2.64 M) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
م. شاه منصوری* 1؛ ّب. فرخی2 | ||
1دانشکده فیزیک دانشگاه آزاد اراک | ||
2دانشگاه اراک | ||
چکیده | ||
We consider a new type of integrable coupled nonlinear Schrodinger (CNLS) equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicit form of soliton solutions are derived using the Hirota's bilinear method. We show that the parameters in the CNLS equations only determine the regions for the existence of bright and dark soliton solutions. Finally, through the linear stability analysis, the modulational instability condition is given. | ||
مراجع | ||
[1] B. Farokhi, M. Shahmansouri, and I. Kourakis, Modulated transverse o- plane dus-lattice wave packets in hexagonal two-dimensional dusty plasma crystals, [2] V. I. Karpman, Nonlinear Waves in Dispersive Media, Pergamon, Oxford (1975). [3] C. Sulem and P. L. Sulem, The Nonlinear Schrodinger Equation: Self- Focusing and Wave Collapse, Springer,Berlin (1999). [4] M. Marklund and P. K. Shukla, Nonlinear collective eects in photonphoton and photon-plasma interactions, [5] J. M. Dixon, J. A. Tuszynski and P. J. Clarkson, From Nonlinearity to Coherence. Universal Features of Nonlinear Behavior in Many-Body Physics", Cambridge university, Cambridge (1997). [6] Y. R. Shen, Principles of Nonlinear Optics, Wiley, New York (1984). [7] A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Oxford University, New York (1995). [8] C. X. Miao and G. X. Xu, Global solutions of the Klein-Gordon-Schr?dinger system with rough data in R2+1, [9] Xiao-yan Tang and P. K. Shukla, Modulational instability and exact solution of the nonlinear Schrodinger equation coupled with the nonlinear Klein-Gordon equation [10] S. V. Manakov,Zh. Eksp, On the theory of two-dimensional stationary self focussing of electromagnetic waves, [11] S. V. Manakov,Zh. Eksp, Analytical solution of the coupled nonlinear Schrodinger equations, [12] R. Radhakrishnan, M. Lakshmanan, and J. Hietarinta, Inelastic collision and switching of coupled bright solitons in optical bers, [13] T. Tsuchida and M. Wadati, The Coupled Modied Korteweg-de Vries Equations, [14] T. Tsuchida, N-Soliton Collision in the Manakov Model, [15] A. V. Mikhailov, The reduction problem and the inverse scattering method, [16] V. E. Zakharov and E. I. Schulman, To the integrability of the system of two coupled nonlinear Schrodinger equations [17] V. S. Gerdjikov, in Proceedings of the Sixth International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 3-10 June 2004, edited by I. M. Mladenov and A. C. Hirshfeld, Soa, Softex (2005). [18] Q. H. Park, and H. J. Shin, Painlev analysis of the coupled nonlinear Schrodinger equation for polarized optical waves in an isotropic medium [19] D. N. Christodoulides, and R. I. Joseph, Vector solitons in birefringent nonlinear dispersive media [20] C.R. Menyuk, Pulse propagation in an elliptically birefringent Kerr medium. [21] V. V. Afanasjev, Yu. S. Kivshar, V. V. Konotop, V. N. Serkin, Dynamics of coupled dark and bright optical solitons [22] B. J. Hong, C. C. Yang, L. Wang, Generating dark solitons through crossphase modulation in optical bers [23] Yu. S. Kivshar, Stable vector solitons composed of bright and dark pulses [24] S. Trillo, S. Wabnitz,E. M. Wright, G. Stegeman, Optical solitary waves induced by cross-phase modulation [25] Yu. S. Kivshar, S. K. Turitsyn, Optical double layers [26] A. P. Sheppard, Yu. S. Kivshar, Polarized dark solitons in isotropic Kerr media [27] Deng-Shan Wang, Da-Jun Zhang, and Jianke Yang, Integrable properties of the general coupled nonlinear Schrodinger equations, [28] H. Q. Zhang, T. Xu, J. Li, B. Tian, Integrability of an N-coupled nonlinear Schrodinger system for polarized optical waves in an isotropic medium via symbolic computation, [29] T. Xu, B. Tian, L.L. Li, X. Lu, C. Zhang, Dynamics of Alfvn solitons in inhomogeneous plasmas, [30] R. Hirota, The Direct Method in Soliton Theory, Cambridge University, Cambridge (2004). [31] W. Hereman, W. Zhuang, Symbolic Computation of Conserved Densities for Systems of Nonlinear Evolution Equations, [32] E. M. E. Zayed, Khaled A. Gepreel, A generalized (G'/G) expansion method for nding traveling wave solutions of coupled nonlinear evolution equations, | ||
آمار تعداد مشاهده مقاله: 640 تعداد دریافت فایل اصل مقاله: 522 |