بررسی قابلیت تثبیت بیولوژیکی نیتروژن در ارقام مختلف لوبیا با کاربرد سه نوع مایه تلقیح حاوی باکتری (Phaselus vulgaris L.)

(Rhizobium phaseoli)

مهدی ظاهرخانی، فریبرز نورمحمدی، محمد جواد میرهدایی و رحمعقلمحمدی

چکیده
در این تحقیق تأثیر سه نوع کود بیولوژیکی، شامل رویزون سنی سورپلاس، سورپلاس سنی بلاس و از اینوکتک مصرف کود اولیدز و شاهد (بدون مصرف کود و عدم تلقیح) بر عملکرد و اجزای عملکرد سه رقم مختلف لوبیا شامل لوبیای فرمز ناز، لوبیای چینی رقم 16 و لوبیای سفید کشاورزی، طی آزمایش فاکتوریل در قالب طرح بلوکی کاملاً تصادفی در سه تکرار در سال 1385 در منطقه خرم‌دژ (استان زنجان) مورد بررسی قرار گرفت. نتایج حاصل از تجزیه و تحلیل نشان داد که میان مایه‌های تلقیح بذر لوبیا، اختلاف معنی‌داری از نظر صفتیات جوئی عملکرد داشته، عملکرد کل ماده خشک اندام هواپی، نیتروژن اندام‌های هواپی، نیتور
Fabaceae

1. Fabaceae
هوایی و درصد نیتروژن تبدیل شده در سطح بخش از منطقه اردن تحت تأثیر ایزوئله‌های مختلف تلقیح شده با بذور
لوبیا قرار گرفت که ایزوئله JOV-1- 1VQ5F 7 بی‌خود گرفت اردن دارای بیشترین تأثیر در میزان تبدیل نیتروژن، بیوماس کل و وزن تعداد گره بود (۲۰). بر اساس نظر العریف و همکاران (۱۹۹۷) تعداد گره‌های ریشه‌ای و الگوی پراکنش آنها روانی رشد سبیعای نباتی به ارقم دارد (۱۰). هنیز و همکاران (۱۹۹۹) نتیجه گرفتند که استفاده از مایه‌ای تلقیح میع در مقایسه با نمونه‌های آزمایشی آلاینده‌های نباتی در دمای ۱۳. کیور و هندلی (۱۹۹۲) هاکتار مقدار میزان تبدیل نیتروژن در سویا را ۲۳۷
کیلوگرم در سال تخمین زده‌اند (۱۵). اکتشافات شیواه (۲۰۰۲) نشان داد که استفاده سبیعای نباتی مختلف باکتری در لوبیای تپاری در وزن خشک اندام های
هوایی تأثیر معنی‌داری مشاهده می‌شود (۱۹). رودرهزیگر و همکاران (۱۹۹۹) دریافتند که وزن خشک
اندام نباتی در لوبیا تحت تأثیر ترکیبات مختلف باکتری و رفاه قرار می‌گیرد (۱۸). قاسمی پیر بلوطی
و همکاران (۱۳۸۴) با بررسی توان تبدیل بیولوژیکی
نیتروژن در ارقم مختلف لوبیای نباتی گرفتند که تلقیح
بذر یاسویه L-109 به داشت از منطقه توپرسکان
همدان با حداکثر وزن گره، نیتروژن اندام نباتی
هوایی و درصد تبدیل نیتروژن به عنوان کارآمدترین سبیعای
باکتری ریزویوم است (۴). ردن و هریج (۱۹۹۹) با
تحت‌بندی نشان داد که تغییرات مربوط به
عملکرد لوبیا به احتمال قوی مربوط به اختلاف در
بادگاری (۱۳۸۱) با مطالعه و بررسی اثرات تلقیح
Bradyrhizobium
سویا با سبیعای مختلف باکتری
بر گرمینی و میزان تبدیل نیتروژن
به این نتیجه رسیدند که سبیعای ایزوئله استیک نسبت به سایر سبیعای سبیعای‌های سنگین و آب
و سواور از باکتری گره بندی و تبدیل
نیتروژن بیشتری بردخوردار بوده است (۱۰). حفیظ و
همکاران (۲۰۰۰) نتیجه ارزیابی روش مقدار گره
بندی ارقم اعضا تلقیح شده با سبیعای باکتری
ریزویوم لکوترویوم نتیجه گرفتند که باکتری مذکور اثر معنی‌داری بر وزن خشک گره‌های اشتکه است (۱۲).
دشتی و خدابنده (۱۳۷۸) در مطالعه روی تأثیر هم
ژستی سبیعای سبیعای ریزویوم ملیبیتی بر سر گونه
بیان کرده‌اند. روی نتیجه گرفتند که حضور باکتری
موجب افزایش وزن خشک گره‌های سبیعای می‌گردد.
ماریانی‌پور و همکاران (۲۰۰۰) در ارزیابی
روی اثر متقابل سبیعای ریزویوم فازیولی و روش
لوبیای زراعی به وجود اختلاف معنی‌دار در این
خصوصی اشاره کردند و طی این تحقیق سبیعای باکتری
با میزان ۲۱۴ ملی‌گرم، باکتری بردی
PRF18
خشک گره را با وجود آورد (۱۳). داشیان (۱۳۷۸)
در مطالعه روی اثر متقابل سبیعای باکتری برای
ریزویوم (هلی نیترو، گلولکت و ریزویکینگ) و ارقم
مختلف سبیعای (ویلیامرس، سنگوری و هارکور) به اثر
معنی‌دار رقم ایجاد نمود که در این رقم ویلیامز
به دلیل دارا بودن طول دوره رشد بیشتر، از گره‌ای
بیشتری بردخوردار بوده (۵). تاماسمی (۲۰۰۲) در تحقیقات
خود نشان داد که تعداد گره، وزن گره، و وزن اندام های

۱- Highstick
۲- Helinitro
۳- Sinorhizobium meliloti
۴- Rhizobium phaseoli
مواد و روش‌ها
برای انجام این تحقیق، حدود یک هزار متر مربع
از زمین‌های کشت و صنعت خرم در بیرا اجرای
طرحی با ۴۵ کرت ۲۰ متر مربعی (۴۵۰) انتخاب شد.
ارتفاع محل آزمایش ۱۵۴۰ متر از سطح دریا و
میانگین بارندگی آن ۲۸۵ میلی‌متر در سال بود.
زمین مورد نظر در سال قبل بیش‌تر در سطح
بوده است. یک از شکم از علف کشت تری‌فی‌رالیون به
صورت پیش روی‌یابی برای مبارزه با علف‌های هرز
استفاده شد. دیسک به منظور اختلاط علف‌کشت و خرده
کردن کل‌لوک‌ها و اختلاط کودهای فسفات و بانسه
زده شد و ایجاد نه‌ره یا اصلی و فرعی و جوی پشه
با کمک ماسیون آلت انجام گرفت. میزان کودهای
براساس آزمایش خاک (جدول ۱) تعیین گردید.
همچنین به میزان ۳۰ کیلوگرم بذر از ارقام مورد نظر در
طرح شامل لوبیای قرمز ناز، لوبیای چیتی ۱۶
و COS16 سفید کشاورز و همچنین سبزه‌های یک کیلوگرمی
کودهای بیولوژیکی مورد نظر برای اجرای طرح شامل
ریزی‌های سپری‌پلاس، ازوتوباترک و سوئیر نیتروپلاس
تهیه گردید. طرح آزمایشی، برای نقشه‌برداری زمین با
طبقات کشنده و قطعه‌بندی پایه‌بندی و سپس آب‌یاری
پیش از کاشت انجام گرفت و پس از انتخاب تصادفی
کرت‌های بذر (در سایه) با مایه‌های تلفیق مورد نظر
با کودهای بیولوژیکی تلفیق شده و به صورت دستی
کشت گردیدن. سپس روی لوبیای قرمز چیتی رقم
لوبیای قرمز ناز و لوبیای سفید کشاورز که
از ارقام مورد شکت منطقه بودند و به سه نوع
کود بیولوژیکی قابلیت آغشته نموده به بذر شال:

1- Rhizobean super plus Biofertilizer
2- Super nitro plus
3- Azotobacter plus Azospirillum Inoculant

میزان توان تثبیت نیتروژن و فرآم شدن نیتروژن برای
گیاه توسط سویه‌های مختلف باکتری می‌باشد (۱۷).

طاهرخانی، م، بررسی قابلیت تثبیت بیولوژیکی نیتروژن در ارقام...
نتایج و بحث
عملکرد دانه

نتایج تجزیه واریانس داده‌ها نشان داد که از نظر عملکرد دانه در پهنای مختلف فاکتور تلقیح و عدم تلقیح اختلاف معنی‌داری در سطح یک درصد وجود دارد (جدول 2). بیشترین عملکرد دانه از کاربرد کیلوگرم نیتروژن خالص و مایع تلقیح ریزوبیون سوپر پلاتس (ویژه لوبیا) به دست آمد و کمترین مقدار آن مربوط به تیمار شاهد (بدون تلقیح و بدون مصرف کود نیتروژن) بود (جدول 3). این نتایج نشان می‌دهد که فرآیند بودن نیتروژن در شرایط مصرف کیلوگرم نیتروژن خالص موجب رفت عملکرد کود نسیمگیرن سوپر پلاتس که حاصل باکتری‌های تثبیت کننده نیتروژن ویژه لوبیا می‌باشد توانسته است شرایط مطلوب را نسبت به سایر تیمینهر تأمین نماید. همچنین این موضوع مشخص می‌سازد که کودهای بیولوژیکی صنعتی به تنهایی نمی‌توانند جایگزین کودهای شیمیایی شوند. بطوری که سایر محصولات نیز به این مسئله اقدامات داده که کودهای بیولوژیکی برای مرغ موارد به عنوان جایگزین، و در اکثر موارد به شکل مکمل، می‌توانند تضمین کنند که یکی از ابزاری است که کشاورزی باشد و کودهای شیمیایی نیز هم به عنوان جزئی از در

جدول 1- مشخصات خاک مزرعه قبل از کاشت (عمق نمونه برداری 30-50 سانتی متری خاک بوده است)

<table>
<thead>
<tr>
<th>فرضی</th>
<th>نتایج鸬</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساند</td>
<td>33</td>
</tr>
<tr>
<td>سیلت</td>
<td>34</td>
</tr>
<tr>
<td>کلی</td>
<td>33</td>
</tr>
<tr>
<td>پیوند</td>
<td>33</td>
</tr>
</tbody>
</table>

نتایج اجتماعی

کشاورزی پایداری می‌تواند نظر حواری که از نظر مقایسه میانگین و مربوط به ارقام نیز نشان داد که بیشترین عملکرد دانه مربوط به دارنودی پلد می‌باشد. این نتایج نشان می‌دهد که فرآیند جایگزین کود نسرین سوپر پلاتس (ویژه لوبیا) به دست آمد و کمترین مقدار آن مربوط به تیمار شاهد (بدون تلقیح و بدون مصرف کود نیتروژن) بود (جدول 2). این نتایج نشان می‌دهد که فرآیند بودن نیتروژن در شرایط مصرف کیلوگرم نیتروژن خالص موجب رفت عملکرد کود نسیمگیرن سوپر پلاتس که حاصل باکتری‌های تثبیت کننده نیتروژن ویژه لوبیا می‌باشد. توانسته است شرایط مطلوب را نسبت به سایر تیمینهر تأمین نماید. همچنین این موضوع مشخص می‌سازد که کودهای بیولوژیکی صنعتی به تنهایی نمی‌توانند جایگزین کودهای شیمیایی شوند. بطوری که سایر محصولات نیز به این مسئله اقدامات داده که کودهای بیولوژیکی برای مرغ موارد به عنوان جایگزین، و در اکثر موارد به شکل مکمل، می‌توانند تضمین کنند که یکی از ابزاری است که کشاورزی باشد و کودهای شیمیایی نیز هم به عنوان جزئی از در

وزن گره ها

شکل 1 گره‌های ریشه‌های لوبیا را نشان می‌دهد. وزن گره در ارقام مختلف لوبیا اختلاف معنی‌داری نشان داد (جدول 2). ولی وزن گره‌های تکلیف شده در ریشه‌های لوبیا در تیمارها مختلف مربوط به فاکتور تلقیح با یکدیگر در سطح احتمال یک درصد اختلاف معنی‌داری نشان دادند (جدول 2). بیشترین تعداد گره تکلیف شده مربوط به تیمار ریزوبیون سوپر پلاس و کمترین آن به تیمارهای 75 کیلوگرم نیتروژن

جدول 1- مشخصات خاک مزرعه قبل از کاشت (عمق نمونه برداری 30-50 سانتی متری خاک بوده است)

<table>
<thead>
<tr>
<th>فرضی</th>
<th>نتایج鸬</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساند</td>
<td>33</td>
</tr>
<tr>
<td>سیلت</td>
<td>34</td>
</tr>
<tr>
<td>کلی</td>
<td>33</td>
</tr>
<tr>
<td>پیوند</td>
<td>33</td>
</tr>
</tbody>
</table>
۸۴

م. بررسی قابلیت تثبیت بیولوژیکی نیتروژن در ارقام...

با سویه ۱۲۵ ل-۱۵/۱۲ درصد به درست آوردن کمتر از میزان نیتروژن پروتئینی به تیمار شاهد (بدون تلقیح) مربوط بوده است (۴.

نیتروژن اندازه‌های هوایی

بین تیمارهای مربوط به فاکتور تلقیح، اختلاف بسیار معنی‌داری از لحاظ میزان نیتروژن تجمع یافته در اندازه‌های هوای مشاهده شد (جدول ۲). بیشترین میزان نیتروژن مربوط به تیمارهای مصرف ۷۵ کیلوگرم نیتروژن خالص و کاربرد مایع تلقیح رزوبیوس سوربالاس بود (بترتیب ۲/۷۶ درصد) و کمترین آن با ۴/۵۶ درصد مربوط به تیمار شاهد بود (جدول ۲). اثرات منتفی بوده است.

نتایج حاصل از تجربه واریانس نشان داد که از نظر پروتئین دانه بین سطح مصرف فاکتور تلقیح و اثرات منتفی رقم و نوع مایع تلقیح در سطح اختلاف ۵ درصد اختلاف معنی‌داری وجود دارد. اما این نتایج برای ارقام مختلف معنی‌دار نبود (جدول ۲).

مقاوا نتایج برای میانگین مربوط به درصد پروتئین دانه در تیمارهای مختلف (جدول ۳) نشان داد که بیشترین میزان پروتئین مربوط به تیمارهای مصرف ۷۵ کیلوگرم نیتروژن خالص و مایع تلقیح رزوبیوس سوربالاس (بترتیب ۲/۸۷ درصد) و کمترین مقدار آن به تیمار شاهد (بدون کود و مایع تلقیح) اختصاص دارد و تیمارهای ازتویاک و سوربالاس حد وسط این مقدار بودند (جدول ۳). قاسم‌یی بیز بلوطی (۱۳۸۴) با انجام مطالعات خود نشان داد که بین کاربرد سویه مایع تلقیح باکتری از لحاظ میزان پروتئین دانه اختلاف معنی‌داری وجود دارد. و بیشترین میزان پروتئین را از کاربرد تلقیح بدور لوبیا.
سطح یک درصد را بین ارقام مختلف برای صفت تعداد غلاف در بوته، نشان می‌دهد (جدول ۲). بیشترین تعداد غلاف در بوته مربوط به رقم لوییا چینی ۱۶ بود (جدول ۴). نتایج تجزیه واریانس نشان داد که اثرات متقابل مایه‌های تلفیقی و ارقام نیز در سطح ۵ درصد با یکدیگر اختلاف معنی‌داری دارند. به طوری که بیشترین تعداد غلاف در بوته مربوط به تیمار لوییا چینی ۱۶ و مصرف ۷۵ کیلوگرم کود نیترول‌زن خالص از منبع کود اوره بود.

عملکرد کل ماده‌ی خشک اندازه‌های هوایی
عملکرد کل ماده‌ی خشک اندازه‌های هوایی در سطح مختلف مربوط به فاکتور تلفیقی، در سطح یک درصد تفاوت معنی‌دار داشت (جدول ۲). نتایج جدول مقایسات میانگین (جدول ۳) نشان می‌دهد که بیشترین میزان عملکرد کل ماده‌ی خشک از تیمار ۷۵ کیلوگرم نیترول‌زن خالص در هر هکتار به میزان ۴۶۲۰ گره‌های ریشه‌ای لوییا.
جدول ۲- نتایج تجزیه و ارتباط صفات مورد مطالعه ارقام مختلف لویا تحت تأثیر میانهای تلفیق‌افزایش

<table>
<thead>
<tr>
<th>M.S</th>
<th>میانگین مربعات</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>عملکرد نیتروژن (g/ha)</td>
<td>گروه دانه</td>
<td>گروه دانه</td>
<td>گروه دانه</td>
<td>گروه دانه</td>
</tr>
<tr>
<td></td>
<td>۱۰۰۳.۳</td>
<td>۱۲۳۴.۵</td>
<td>۱۶۵۷.۸</td>
<td>۱۹۰۱.۲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰۵۶.۸</td>
<td>۱۲۸۲.۴</td>
<td>۱۶۵۳.۹</td>
<td>۱۹۰۱.۲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰۰۳.۳</td>
<td>۱۲۳۴.۵</td>
<td>۱۶۵۷.۸</td>
<td>۱۹۰۱.۲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰۵۶.۸</td>
<td>۱۲۸۲.۴</td>
<td>۱۶۵۳.۹</td>
<td>۱۹۰۱.۲</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳- مقایسه میانگین برخی از صفات در لویا تحت تأثیر آغنگ‌گی بذر با انواع مختلف کودهای بیولوژیک

<table>
<thead>
<tr>
<th>A</th>
<th>فاکتور</th>
<th>شاهد</th>
<th>مصری</th>
<th>ریزدی، سوبر بیلاد</th>
<th>سوبر بیلاد</th>
<th>ازونیکار</th>
<th>LSD(۵٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>عملکرد غلاف در بوته (kg/ha)</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
</tr>
<tr>
<td></td>
<td>عملکرد نیتروژن (g/ha)</td>
<td>۱۰۵۶.۸</td>
<td>۱۰۵۶.۸</td>
<td>۱۰۵۶.۸</td>
<td>۱۰۵۶.۸</td>
<td>۱۰۵۶.۸</td>
<td>۱۰۵۶.۸</td>
</tr>
<tr>
<td></td>
<td>عملکرد اندامهای هوایی (kg/ha)</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
<td>۴۱۸۶ ab</td>
</tr>
</tbody>
</table>

* **، نمادی برای ترکیب معنی‌دار در سطح احتمال ۵٪ و / /، نمادی برای ترکیب معنی‌دار در سطح احتمال ۱٪ نشان‌دهنده عدمی‌داری می‌باشد.*
پژوهش‌های جدید این مقاله را نشان می‌دهد که تغذیه نیتروژن می‌تواند بر اکثریت گیاهان مواد خشک و گره‌ها را افزایش دهد.

جدول ۴: مقایسه میانگین برخی از صفات در ارقام مختلف لوییا

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>عملاکرد ماده خشک (kg/ha)</th>
<th>رشد نیتروژن اندام‌های هوابی (درصد)</th>
<th>تعداد غلاف در پو дек</th>
<th>پروتئین دانه (درصد)</th>
<th>وزن گره‌ها (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوییا فرم ناز</td>
<td>4296c</td>
<td>14/8c</td>
<td>0/33</td>
<td>21/4a</td>
<td>0/288b</td>
</tr>
<tr>
<td>لوییاسفید کشاورز</td>
<td>2696ab</td>
<td>17/16b</td>
<td>0/24a</td>
<td>22/5a</td>
<td>0/109a</td>
</tr>
<tr>
<td>لوییا چنی</td>
<td>3006a</td>
<td>22/2a</td>
<td>0/24a</td>
<td>22/7a</td>
<td>0/23a</td>
</tr>
<tr>
<td>LSD (٪)</td>
<td>1097/7</td>
<td>0/26</td>
<td>0/24a</td>
<td>22/7a</td>
<td>0/23a</td>
</tr>
</tbody>
</table>

منابع

1- ارزانش، م. ح. 1979. بررسی قابلیت جند نوع ماده برای تولید مایه تلقویج مابع سویا. مجله خاک آب، ویژه‌نامه بیولوژی خاک، جلد 1، شماره 2.
2- اسکاید رحمانی، ه. و. و. فلاح. 1380. ضرورت تولید و تروїج کودهای بیولوژیک محکم رشد گیاه. مجموعه مقالات ضرورت تولید صنعتی کودهای بیولوژیک.
3- اشکنادی، ا. 1379. بررسی پتانسیل تلقویج در همیاپستی بومی موزه‌ویبوسیم سبز. مجله خاک آب، ویژه‌نامه بیولوژی خاک، جلد 12، شماره 7.
4- قاسمی بیر بلوتویی، ع. 1990. اثرات گلبرگ و اکثریت گلبرگ در اثرات مختلف روی بیولوژیک. مجله پژوهش و سازندگی، شماره 29، صفحه 26-38.
5- دانشیان، ج. 1378. اثرات تلقویج بذور ارقام سویا توسط باکتری های برایی ریزیبویوم زایوئیکوم بر خصوصیات کمی و کیفی ارقام سویا. پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس.
6- دشتی، م. و. ن. خدائند، م. 1378. بررسی تأثیر همیاپستی بومی موزه‌ویبوسیم سیروئیکومی بر سه گونه یونجه یکساله. شش‌شنبه کنگره علوم خاک ایران، دانشگاه مشهد، 33-40.
7- کوچکی، ع. 1377. زراعت حیوانات. انتشارات جهاد دانشگاهی مشهد.
8- مجید‌جوی، ن. و. 1376. حیوانات در ایران. انتشارات جهاد دانشگاهی دانشگاه مشهد.
9- بادگاردی، م. 1380. بررسی اثر تلقویج بذور سویا با سبیه‌ها مختلف باکتری برایی رژیروئیکوم بر عملکرد و اجزای عملکرد جهت انتخاب ترکیب. پایان‌نامه کارشناسی ارشد زراعت، مجمع آزموز عالی ابوریحان، دانشگاه تهران.

