تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,270 |
تعداد دریافت فایل اصل مقاله | 55,444,811 |
Ranking DMUs by ideal points in the presence of fuzzy and ordinal data | ||
Theory of Approximation and Applications | ||
مقاله 2، دوره 9، شماره 2، اسفند 2015، صفحه 13-36 اصل مقاله (512.82 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
M Izadikhah* 1؛ Z Aliakbarpoor1؛ H Sharafi2 | ||
1Department of Mathematics, College of Science, Arak Branch, Islamic Azad University, Arak, Iran | ||
2Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
چکیده | ||
Envelopment Analysis (DEA) is a very eective method to evaluate the relative eciency of decision- making units (DMUs). DEA models divided all DMUs in two categories: ecient and inecient DMUs, and don't able to discriminant between ecient DMUs. On the other hand, the observed values of the input and output data in real-life problems are sometimes imprecise or vague, such as interval data, ordinal data and fuzzy data. This paper develops a new ranking system under the condition of constant returns to scale (CRS) in the presence of imprecise data, In other words, in this paper, we reformulate the conventional ranking method by ideal point as an imprecise data envelopment analysis (DEA) problem, and propose a novel method for ranking the DMUs when the inputs and outputs are fuzzy and/or ordinal or vary in intervals. For this purpose we convert all data into interval data. In order to convert each fuzzy number into interval data we use the nearest weighted interval approximation of fuzzy numbers by applying the weighting function and also we convert each ordinal data into interval one. By this manner we could convert all data into interval data. The numerical example illustrates the process of ranking all the DMUs in the presence of fuzzy, ordinal and interval data. | ||
مراجع | ||
[1] Adler, N., Friedman, L., Sinuany-Stern, Z.. Review of ranking methods in the data envelopment analysis context. European Journal of Operational Research, 140(2) (2002) 249-265. [2] Andersen, P., Petersen, N. C. A procedure for ranking ecient units in data envelopment analysis.Management Science,39(10) (1993), 1261-1264. [3] A. Charnes, W.W. Cooper, A.Y. Lewin and L.M. Seiford, Data Envelopment analysis: Theory ,Methodology and Applications Kluwer Academic Publishers, Norwell, MA,1994. [4] A. Charnes, W.W. Cooper, E. Rhodes, Measuring the eciency of decision making units, Euro. J. Operat. Res., 2 (1978) 429-444. [5] G.X. Chen and M. Deng, A cross-dependence based ranking system for ecient and inecient units in DEA, Expert Systems with Applications,38 (2011) 9648-9655. [6] W.D. Cook, J. Doyle, R. Green and M. Kress, Multiple criteria modeling and ordinal data European Journal of the Operational Research, 98 (1997) 602-609. [7] W.D. Cook and M. Kress, A multiple criteria decision model with ordinal preference data, European Journal of Operational Research, 54(1991) 191- 198. [8] W.D. Cook, M. Kress and L. Seiford, On the use of ordinal data in Data envelopment analysis Journal of the Operational Research Society, 44 (1993) 133-140. [9] W.W. Cooper, K.S. Park and G. Yu, IDEA and AR-IDEA: models for dealing with imprecise data in DEA, Management Science 45 (1999) 597- 607. [10] W.W. Cooper, K.S. Park and G. Yu, An illustrative application of IDEA (imprecise data envelopment analysis) to a Korean mobile telecommunication company, Operations Research 49 (2001) 807-820. [11] W.W. Cooper, K.S. Park and G. Yu, IDEA (imprecise data envelopment analysis) with CMDs (column maximum decision making units), Journal of the Operational Research Society 52 (2001) 176-181. [12] D.K. Despotis and Y.G. Smirlis, Data envelopment analysis with imprecise data, Eur. J. Oper. Res. 140 (2002) 24-36. [13] D.Dubois and H. Prade, Operations on fuzzy numbers, Internat. J. Systems Sci., 9 (1978) 626-631. [14] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Application, Academic Press, New York, 1980 [15] T. Entani, Y. Maeda and H. Tanaka, Dual models of interval DEA and its extension to interval data, Eur. J. Oper. Res. 136 (2002) 32-45. [16] P. Guo and H. Tanaka, Fuzzy DEA: a perceptual evaluation method, Fuzzy Sets and Systems 119 (2001) 149-160. [17] F. Hosseinzadeh Lot, R. Fallahnejad and N. Navidi, Ranking Ecient Units in DEA by Using TOPSIS Method, Applied Mathematical Sciences, 5 (17) (2011) 805-815. [18] F. Hosseinzadeh Lot, M. Izadikhah, R. Roostaee, M. Rostamy Malkhalifeh, A goal programming procedure for ranking decision making units in DEA, Mathematics Scientic Journal, Vol. 7, No. 2, (2012), 19-38. [19] M. Izadikhah, Ranking units with interval data based on ecient and inecient frontiers, Mathematics Scientic Journal, 3, 2 (2007) 49-57. [20] G.R. Jahanshahloo, F. Hosseinzadeh Lot, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights, Expert Systems with Applications, 37 (2010) 7483-7488. [21] G.R. Jahanshahloo, F. Hosseinzadeh Lot, V. Rezaie and M. Khanmohammadi, Ranking DMUs by ideal points with interval data in DEA, Applied Mathematical Modelling 35 (2011) 218-229. [22] G.R. Jahanshahloo, F. Hosseinzadeh Lot, M. Sanei and M. Fallah Jelodar, Review of Ranking Models in Data Envelopment Analysis, Applied Mathematical Sciences, 2 (29) (2008) 1431-1448. [23] G.R. Jahanshahloo, F. Hosseinzadeh Lot, N. Shoja, G. Tohidi and S. Razavyan, Ranking using l1-norm in data envelopment analysis, Applied Mathematics and Computation, 153 (2004) 215-224. [24] G.R. Jahanshahloo, H.V. Junior, F. Hosseinzadeh Lot and D. Akbarian, A new DEA ranking system based on changing the reference set, European Journal of Operational Research, 181 (2007) 331-337. [25] G.R. Jahanshahloo, M. Soleimani-damaneh, and E. Nasrabadi, Measure of eciency in DEA with fuzzy input-output levels: A methodology for assessing, ranking and imposing of weights restrictions. Applied Mathematics and Computation, 156 (2004) 175-187. [26] C. Kao, Interval eciency measures in data envelopment analysis with imprecise data, European Journal of Operational Research 174 (2006)1087- 1099. [27] C. Kao and S.T. Liu, Fuzzy eciency measures in data envelopment analysis, Fuzzy Sets and Systems 119 (2000) 149-160. [28] S.H. Kim, C.G. Park and K.S. Park, An application of data envelopment analysis in telephone oces evaluation with partial data, Comput. Oper. Res. 26 (1999) 59-72. [29] Y.K. Lee, K.S. Park and S.H. Kim, Identication of ineciencies in an additive model based IDEA (imprecise data envelopment analysis), Comput. Oper. Res. 29 (2002) 1661-1676. [30] S. Lertworasirikul, S.C. Fang, J.A. Joines and H.L.W. Nuttle, Fuzzy data envelopment analysis (DEA): a possibility approach, Fuzzy Sets and Systems 139 (2003) 379-394. [31] S. Li, G.R. Jahanshahloo and M. Khodabakhshi, A super-eciency model for ranking ecient units in data envelopment analysis, Applied Mathematics and Computation, 184 (2007) 638-648. [32] B. Liu and Y.K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (4) (2002) 445-450. [33] F-H.F. Liu and H.H. Peng, Ranking of units on the DEA frontier with common weights, Computers and Operations Research, 35 (2008) 1624-1637. [34] S. Mehrabian, M.R. Alirezaee, G.R. Jahanshahloo, A complete eciency ranking of decision making units in data envelopment analysis, Comput. Optim. Appl. 14 (1999) 261-266. [35] F. Rezai Balf, H. Zhiani Rezai, G.R. Jahanshahloo and F. Hosseinzadeh Lot, Ranking eecient DMUs using the Tchebychev norm, Applied Mathematical Modelling, 36 (2012) 46-56. [36] M. Rostamy-Malkhalifeh, N. Aghayi, Two Ranking of Units on the Overall Prot Eciency with Interval Data, Mathematics Scientic Journal, Vol. 8, No. 2, (2013), 73-93. [37] A. Saeidifar, Application of weighting functions to the ranking of fuzzy numbers, Computers and Mathematics with Applications, 62 (2011) 2246- 2258. [38] J.K. Sengupta, A fuzzy systems approach in data envelopment analysis. Computers and Mathematics with Applications, 24 (1992) 259-266. [39] A.H. Shokouhi, A. Hatami-Marbini, M. Tavana and S. Saati, A robust optimization approach for imprecise data envelopment analysis, Computers and Industrial Engineering 59 (2010) 387-397. [40] Y.M. Wang, R. Greatbanks and J.B. Yang, Interval eciency assessment using data envelopment analysis, Fuzzy Sets and Systems 153 (2005) 347- 370. [41] Y-M. Wang, Y. Luo and Y-X. Lan, Common weights for fully ranking decision making units by regression analysis. Expert Systems with Applications, 38 (2011) 9122-9128. [42] Y-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis. Journal of Computational and Applied Mathematics, 223 (2009) 469-484. [43] H.J. Zimmermann, Description and optimization of fuzzy system. International Journal of General System, 2 (1976) 209-216. [44] H.J. Zimmermann, Fuzzy set theory and its applications. Boston: Kluwer- Nijho, (1996). [45] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1 (1978) 3-28. [46] J. Zhu, Eciency evaluation with strong ordinal input and output measures , European Journal of Operational Research, 146 (2003)477-485. | ||
آمار تعداد مشاهده مقاله: 1,019 تعداد دریافت فایل اصل مقاله: 731 |