تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,222 |
تعداد دریافت فایل اصل مقاله | 54,843,889 |
Legendre wavelet method for solving Hammerstein integral equations of the second kind | ||
Theory of Approximation and Applications | ||
مقاله 3، دوره 9، شماره 2، اسفند 2015، صفحه 37-55 اصل مقاله (335.21 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
Sh Javadi؛ J Saeidian* ؛ F Safari | ||
Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani avenue, Tehran 15618-36314, Iran | ||
چکیده | ||
An ecient method, based on the Legendre wavelets, is proposed to solve the second kind Fredholm and Volterra integral equations of Hammerstein type. The properties of Legendre wavelet family are utilized to reduce a nonlinear integral equation to a system of nonlinear algebraic equations, which is easily handled with the well-known Newton's method. Examples assuring eciency of the method and its superiority are presented. | ||
مراجع | ||
[1] K. E. Atkinson, The Numerical Solution of Integral Equations of The Second Kind, Cambridge University Press, Cambridge, 1997. [2] S. M. Berman, A. L. Stewart, A Nonlinear Integral Equation for Visual Impedance, Biol. Cybernetics 33 (1979) 137{141. [3] A.M. Bica, M. Curila, S. Curila, About a numerical method of successive interpolations for functional Hammerstein integral equations, J. Comput. Appl. Math. 236 (2012) 2005{2024. [4] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930) 117{176. [5] H. R. Thieme, On a class of Hammerstein integral equations, Manuscripta Math. 29 (1979) 49{84. [6] J. Banas, J. Rocha Martin, K. Sadarangani, On solutions of a quadratic integral equation of Hammerstein type, Math. Comput. Model. 43 (2006) 97{104. [7] J. Banas, Integrable solutions of Hammerstein and Uryshon integral equations, J. Austral. Math. Soc. (A) 46 (1989) 61{68. [8] D. ORegan, Existence results for nonlinear integral equations, J. Math. Anal. Appl. 192 (1995) 705{726. [9] D. ORegan, M. Meehan, Existence Theory for Nonlinear Integral and Integro-dierential Equations, Kluwer Academic Publishers, Dordrecht, 1998. [10] K. Atkinson, A survey of numerical methods for solving nonlinear integral equations, J. Int. Eqns. Applics. 4 (1992) 15{46. [11] M. M. Shamivand, A. Shahsavaran, Numerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method, Math. Sci. J.,7 (2011) 93-103. [12] A. Shahsavaran, E. Babolian, Computational method for solving nonlinear Fredholm integral equations of Hammerstein type based on Lagrange interpolation and quadrature method, Math. Sci. J.,5 (2009) 137-145. [13] S. Kumar, I. Sloan, A new collocation-type method for Hammerstein equations, Math. Comp. 48 (1987) 585{593. [14] G. N. Elnagar, M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math. 76 (1996) 147{158. [15] G. N. Elnagar, M. Kazemi, A cell-averaging chebyshev spectral method for nonlinear fredholm-hammerstein integral equations, Int. J. Comput. Math. 60 (1996) 91{104. [16] H. Kaneko, R. D. Noren, B. Novaprateep, Wavelet applications to the PetrovGalerkin method for Hammerstein equations, Appl. Numer. Math. 45 (2003) 255-273. [17] K. Maleknejad, H. Derili, The collocation method for Hammerstein equations by Daubechies wavelets, Appl. Math. Comput. 172 (2006) 846{ 864. [18] S. Youse, M. Razzaghi, Legendre wavelets method for the nonlinear VolterraFredholm integral equations, Math. Comput. Simul. 70 (2005) 1{ 8. [19] E. Babolian, F. Fattahzadeh, E. Golpar Raboky, A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type, Appl. Math. Comput. 189 (2007) 641{646. [20] Y. Ordokhani, Solution of nonlinear VolterraFredholmHammerstein integral equations via rationalized Haar functions, Appl. Math. Comput. 180 (2006) 436{443. [21] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992. [22] M. Razzaghi, S. Youse, The Legendre wavelets operational matrix of integration, Int. J. Syst. Sci. 32 (2001) 495{502. [23] M. Rehman, R. A. Khan, The Legendre wavelet method for solving fractional dierential equations, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 4163{4173. [24] M. Razzaghi, S. Youse, Legendre wavelets method for the solution of nonlinear problems in the calculus of variations, Math. Comput. Model. 34 (2001) 45{54. [25] F. Awawdeh, A. Adawi, A numerical method for solving nonlinear integral equations, Int. Math. Forum 4 (2009) 805{817. [26] Y. Mahmoudi, Wavelet Galerkin method for numerical solution of nonlinear integral equation, Appl. Math. Comput. 167 (2005) 1119{1129. [27] E. Babolian, A. Shahsavaran, Numerical solution of nonlinear Fredholm and Volterra integral equations of the second kind using Haar wavelets and collocation method, J. Sci. Tarbiat Moallem University, 7 (2007) 213{222. [28] K. Maleknejad, K. Nedaiasl, Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations, Comput. Math. Appl. 62 (2011) 3292{3303. | ||
آمار تعداد مشاهده مقاله: 1,724 تعداد دریافت فایل اصل مقاله: 1,127 |