واکنش عملکرد و خصوصیات مورفولوژیکی تعدادی از زنوتیپهای ماش به تنش خشکی (Vigna radiate L.)

مجد رفیعی شیروار، ۱ محمدرضا اصغری پور ۲

چکیده
تنش خشکی یکی از مهم‌ترین مشکلات تولید گیاهان زراعی در مناطق خشک و نیمه‌خشک جهان نظیر ایران می‌باشد. در این بخش، تاثیرات بررسی که در گلخانه‌های تحت تأثیر ۵ سطح خشکی (۰، ۳، ۶، ۹ و ۱۲-بار) به صورت آزمایش‌های فاکتوریل در قالب طرح کاملاً تصادفی با ۴ تکرار و مطالعه قرار گرفت. اعمال تنش خشکی پس از مرحله گیاه‌های متسبب به سطح پانسیل خشکی که با استفاده از منحنی رطوبی گشایی اعمال شده بود، انجام شد. در این مطالعه، ارتفاع گیاه‌ها، طول و تعداد شاخه‌های جانبی، تعداد برگ، تعداد گل، وزن غلاف در طول دوره رشد گیاه اندمازه‌گری گردید. نتایج نشان داد که بررسی‌های ذکر شده در مراحل اولیه تنش بین زنوتیپ‌ها تفاوت معنی‌داری از خود نشان دادند. با گذشت زمان ارات خشکی بروز کرد و این پارامترها در پایان فصل رشد بین سطح خشکی نیز تفاوت معنی‌دار داشتند. برتری سطح بدون تنش (۰-بار) در طول فصل رشد در مورد این پارامترها همواره بیشتر بود. از آن‌جا که تعداد گل، تعداد دانه و تعداد گل نشان‌دهنده تعداد دانه و در نتیجه عملکرد می‌باشد به نظر می‌رسد پارامتر مطلوبی در ارزیابی زنوتیپ‌های متحمل به شرایط تنش پاشید. اکثر پارامترهای اندمازه‌گری شده در پایان فصل رشد بین سطح خشکی، زنوتیپ‌ها و ارث متقابل آنها تفاوت معنی‌داری نشان دادند. در مورد همین پارامترها اندمازه‌گری شده در پایان فصل یک روند توزیعی در راستای افزایش پانسیل منفی مشاهده شد. برتری سطح بدون تنش خشکی (۰-بار) در این پارامترها نیز مشاهده شد. با توجه به نتایج آزمایش می‌توان گفت که بهترین محدوده تنش خشکی برای ارزیابی زنوتیپ‌ها برای تحمیل به نشان پانسیل ۳-تا ۶-بار بود. در نتیجه خشکی شدیدتر خشکی، وزن غلاف، دانه و شاخه در پایان برداشت به حداقل رسید. بین زنوتیپ‌ها نیز در این مرحله توزیع زیادی مشاهده شد. اما یکی از این ایران زنوتیپ‌هایی از شاخه‌های رشدی بالاتری برخورد به پایین می‌آمد. در میان سایر زنوتیپ‌ها زنوتیپ ی-۱۷ و ۱۵-۲ به شرایط تنش پاسخ بهتری نشان دادند و در این MD و Ilag S6A D45-6 به بهترین نتایج کننده بررسی که ویژگی‌های متعددی در نظر گرفت تنش خشکی و تنش قرار گرفت.

واژه‌های کلیدی: ماش، تنش خشکی، عملکرد، خصوصیات مورفولوژیکی

۱ عضو هیئت علمی دانشگاه آزاد اسلامی واحد شیراز و عضو باشگاه پژوهشگران جوان azadpajoohesh@yahoo.com

۲ مدرس دانشگاه آزاد اسلامی واحد شیراز moas@uoz.ac.ir
مقدمه و بررسی منابع

خشکی عمده‌ترین عامل محدود کننده تولید محصولات زراعی در دنیا است (7). یکی از راه‌حل‌های مناسب برای مقابله با تنش خشکی در مناطق خشک تهیه و استفاده از ارگام متصل به خشکی می‌باشد (9). مانند یک جمله گیاهان خانواده بقولات است که در حال حاضر در قسمت‌های مختلف دنیا کشت می‌شود و نقش بسزایی را در تغذیه مردم کشورهای در حال توسعه دارد (11).

تولید سالانه ماس در جهان حدود 1/2 میلیون تن تخمین زده می‌شود که از سطحی متوسط 3 میلیون هکتار برداشت می‌شود. بررسی‌ها در ایران نشان می‌دهد که سطح زیر کشت ماس به حدود ۲۵ تا ۳۰ هزار هکتار در میان لگومهای دانه‌ای مطابق پنج را داراست. ماس در مناطق مرکزی، جنوب شرقی و جنوب غربی ایران می‌شود. تولید سالانه ماس در ایران حدود ۱۵ هزار تن تخمین زده می‌شود (16).

ماس به طور کلی برای نوآوری مراحل با توزالات سالانه به میزان ۱۳۰۰ میلی‌متر مناسب نیست (۱۳). رطوبت بالا در طول فصل رشد بیماری‌های شاخ و برق را افزایش داده و در طول دوره رسیدگی خلاف ممکن است به بیماری‌های داخلی و یا حتی جوانی‌ای دانه‌های غلاف متجر شود، زیرا دانه‌های ماس در طول خواب ندارند (۵). وارما و راوا (1975) گزارش کردند عملکرد‌های دانه، وزن خشکی، گره و مقدار نیتروژن گیاهان ماس در آزمایشات کنترلی در سطوح بالایی رطوبت کاهش می‌یابد (۶۶). همچنین احمد و همکاران (2007) گزارش کردند، شرایط غریبان

1. Vigna radiate L.
2. Varma and Rao
دارنده در عمق 1-6 سانتیمتری یا فواصل یکسان کشت
شد و به همه گلدهانها در حد گرفتاری زراعی آب
داده شد. تنش خشکی بعد از اولین آب تزریق برگ
اعمال گردید. برای تعیین میزان آب مورد نیاز هر
گلدهان در هر بار آبیاری در اندیشه آزمایش منحنی
رطوبتی خاک مورد نظر مشخص گردید. جهت انجام
این کار از دستگاه صفحات فشاری استفاده شد.
سپس به صورت روزانه گلدهان وزن گردید و در
صورت کمتر بودن وزن گلدهانها از حد معمول و
براساس منحنی رطوبتی خاک، میزان آب مورد نیاز
جهت تامین پتانسیل مورد نظر، به میزان گلدان اضافه
گردید (1). درون همه گلدهانها به میزان یکسان
(2 کیلوگرم) خاک ریخته شد. در طول دوره آزمایش
دمای حداکثر و نسبی مسکن و دمای
حداقل 18 درجه مسکن بود. در آزمایش
بسته به زمان در هر یادداشت برداری آزمایشی
طول گیاه، تعداد بزک، تعداد و طول شاخه‌های
جانی، تعداد گل و غلاف اندازه‌گیری شدند. در پایان
دوره آزمایش نیز اندازه‌گیری ارتفاع نهایی، وزن
خشک اندازه‌گیری شد و نسبی و وزن غلاف، تعداد و
وزن دانه اندازه‌گیری گردید.

محاسبات آماری و ترکیب نمودارها با استفاده از
Excel و SPSS انجام شد. جهت مقایسه
نرخ افزایش میانگین‌ها از آزمون چند دامنه دانک استفاده شد. تمام
پارامترهای اندازه‌گیری شده در طول آزمایش در زمان
تجزیه و تحلیل بر اساس واحد تک بوته تعیین شدند.

نتایج و بحث
ارتباط گیاه
اختلاف بین طول نهایی بوته‌های ماس بین سطوح
خشکی (0.003) و بین زنوتیپ‌ها (0.0005)
(الگوی "کاچنیکو"

مواد و روش‌ها
این طرح در گلخانه تحصیلاتی دانشگاه کشاورزی
دانشگاه فردوسی مشهد انجام شد. در این آزمایش
Kopergaon Jalagon Kopergaon Jalagon 17
Berken MY-17 MD 15-2 Ilag S6A D45-6
Kiloga و
مورد مطالعه قرار گرفتند. به این ترتیب متغیر در
از آزمایش از کلسیس دانه جهانی گزینش گردید. آزمایش
به صورت فاکتوریل در قالب طرح کاملاً تصادفی با
تکرار انجام شد و تیمارها شامل پتانسیل آب در
سطح خشکی (0.30 - 0.40 - 0.50 - 0.60 - 0.70 - 0.80 - 0.90 - 1.00 - بار) و
زنوتیپ‌ها در 8 سطح ذکر شده در بالا بودند.
تاریخ کاشت پنج تیر و تاریخ برداشت و پایان
آزمایش پاینده به مهر سال ۱۳۸۷ بود. برای انجام
آزمایش از گلدان‌هایی با قطر ۲۰ سانتی‌متر و ارتفاع
۳۰ سانتی‌متر استفاده شد. در هر گلدان تعداد ۳ عدد

بدون تنش مشاهده شد. در این زمان حداقل تعداد شاخص‌های جانبی در شرایط شدت خشکی حدود 1/5 شاخه و در شرایط طرفت زروئی بیشترین تعداد معادل 3/5 شاخه مشاهده شد (نمونه 3). زنوئیپهای بیشترین تعداد Berken و MY-17، MD 15-2، Jalagon 17، KOM-2، Jalagon 17 و Z-BQA از نمونه‌های مرحله‌ای بررسی گردیده و در نتیجه میزان فتونتز باشند. بررسی این شاخص در شرایط اثرات اهمیت ویژه‌ای برخوردار است. در سایر تحقیقات اثرات تعداد شاخص‌های جانبی در سطوح خشکی مورد بررسی قرار گرفته و روشن نویلی جهت تعداد شاخص جانبی در پتانسیل‌های منفی گزارش شده است (15). از طرفی هم‌تستی مثبت بین تعداد شاخص‌های جانبی با عملکرد دانه در نزدیک شرایط شدت خشکی گزارش شده است (21). بنابراین شاخص بتوان از این شاخص در ماس در انتخاب زنوئیپهای برتر بوده‌برد.

طول شاخص‌های جانبی

اختلافات طول شاخص‌های جانبی از مراحل ابتدای تا پایان پدیدآید برداری بین سطوح خشک و زنوئیپهای منفی‌دار بود. در طول دوره رشد در پتانسیل 3/2 بار (طرفت زراعی) بیشترین طول شاخص‌های جانبی مشاهده شد. بین سطوح تنش خشکی در مراحل اولیه رشد محدوده تغییرات طول شاخص‌های جانبی بین 11 تا 6 سانتی‌متر بود و در معنی‌دار شد، اما در مورد اثرات متقابل اختلافات معنی‌دار نشد. بیشترین ارتفاع معادل 43 سانتی‌متر در پتانسیل 0.4 بار و کمترین ارتفاع گیاه معادل 29 سانتی‌متر در پتانسیل 0.2 بار (نمونه 4) با ارتفاع معادل 30 سانتی‌متر و Berken با ارتفاع 30 سانتی‌متر به ترتیب دارای بیشترین و کمترین ارتفاع بودند. البته اختلافات طول نهایی بین بسیاری از زنوئیپهای معنی‌دار نبود (نمونه 2). در بین مراحل پایان‌دارند برداری در مراحل اولیه ارتفاع تنش اختلافات بین زنوئیپهای مشاهده‌تر بود. اما در پایان فصل رشد اختلافات بین سطوح خشکی نیمایان‌تر شد. در مراحل اولیه رشد به علت عدم تنش خشکی اختلافات ذاتی بین زنوئیپهای بروز کرد اما با گذشت زمان و اعمال تنش اثرات سطوح خشکی نیز ظاهر شد. در تمام دوره رشد در پتانسیل 0.4 بار (طرفت زراعی) بیشترین طول شاخص‌های جانبی.

ارتفاع گیاه یکی از صفاتی است که به شدت به عوامل محیط و ویژه‌ای است. در بررسی سایر محققین بر روز سایر حویل‌ها که به طول در پتانسیل های منفی بالاتر برتری گزارش شده است (16). هر گاه کاه و کلس گیاه مشابه گونه علفه مصرف شود، شاید این فاکتور در شرایط تنش خشکی اهمیت بیشتری بیدا کند. اما این شاخص از لحاظ دیرسپر شدن گیاه و تداخل مرحله پر‌شدن دانه با شرایط خشکی، مناسب نمی‌باشد.

تعداد شاخص‌های جانبی

در روزهای اولیه پس از کاشت اختلافات تعداد شاخص‌های جانبی بین زنوئیپهای معنی‌دار بود (p<0.01) در حدود 60 روز پس از کاشت اختلافات تعداد شاخص‌های جانبی بین سطوح تنش خشکی پدیدار شد، و از این مرحله برتری سطح
تعداد برگ مشاهده شد که علت آن ممکن است ریزش برگ در بروز اثر نشاندر این محدوده زمانی باشد.

توجه کنید که بروز تعداد برگ تحت سطح نشان خشکی مشاهده شد که این روند نزولی در سایر محیط‌های مناسب نیز نشان دهنده این پدیده است (۱۵-۱۹). از آن‌جایی که تعداد برگ می‌تواند تعبین گردد کل سطح پریژ و میزان فتوسنتز کل بوده و در نهایت بر عملکرد تأثیر بگذارد بنابراین اگر زنوتیپ‌هایی در شرایط نشان خشکی از تعداد برگ بالاتری برخودار باشند، می‌تواند در شرایط نشان خشکی عملکرد دانه بالاتری هم تولید کند. البته، باید به نسبت افزایش تعرق نیز توجه شود زیرا با افزایش برگ میزان تعرق نیز افزایش می‌یابد. سپس (۱۹۷۷) و ابیرشت (۱۹۸۷) همکاران (۱۹۸۸) گزارش کرده‌اند که در شرایط خشکی برگ‌ها کوچک‌تر و تعداد آنها کمتر می‌شود. در نتیجه این تعداد برگ در زمان نشان می‌تواند به علت پریژ زود رس بوده و عاملی برای کاهش تعرق و رشدگی زودتر گیاه در شرایط نشان خشکی باشد.

۱۵-۴۲)

تعداد گل

ظهور گل در تیمارهای مختلف از ۳۵ تا ۵۰ روز بعد از کاشت آغاز شد و در ۷۵ تا ۸۰ روز پس از کاشت حداکثر تعداد گل مشاهده شد و در ۷۰ روز پس از کاشت برتری سطح بدن تا کامل مشهود بود (نمودار ۹). حداکثر تعداد گل در شرایط نشان در کل محدوده نشان‌داده شد (نمودار ۷). برتری سطح فاقد نشان دهنده تعداد گل در محیط‌های مختلف را نشان می‌دهد. زنوتیپ ۱۷ (Kopergaon)، زنوتیپ ۶ (D45-4) و ۵-۷۰ روز حالت نشان در مراحل بلوغ‌کاری کامل مشهود بود.

۱. Singh
۲. Leport
Jalagon 17

Kopergaon, Jalagon 17
برای تحلیل به نشان داده که پتانسیل باید به دلیل شرایط محیطی و حجم کم گلداک‌ها پارامترهای وزن دانه، وزن غلاف و شاخص پدشادت به خوبی تأثیر خود را نشان ندادند. در مورد پارامترهای نبایا گری شده در پایان فصل نیز تعداد نهایی غلاف، وزن خشک اندام‌های هوابی از شاخص‌های ارجح در این مرحله بودند. در مورد همه پارامترهای اندام‌های بیشتری شده در پایان فصل یک روند نزولی در راستای افزایش پتانسیل معنی‌دار مشاهده شد. به‌طور کلی، نتایج آزمایش می‌توان گفت که بهترین محدوده نشانه‌ی نشانه‌ای برای ارزیابی زنوتیپ‌ها

نمودار 2- اختلاف ارتفاع نهایی زنوتیپ‌های مختلف ماس تحت آزمایش نشان‌های

نمودار 3- تعداد شاخص‌های جانبه زنوتیپ‌های مختلف ماس در طول دوره رشد تحت آزمایش نشان‌های

نمودار 4- تعداد شاخص‌های جانبه زنوتیپ‌های مختلف ماس در طول دوره رشد
نمودار 6- طول شاخ‌های جانبه زنوتیپ‌های مختلف ماس در طول دوره رشد تحت آزمایش نش خشکی

نمودار 7- تعداد برگ‌های زنوتیپ‌های مختلف ماس در طول دوره رشد تحت آزمایش نش خشکی

نمودار 8- تعداد برگ‌های بونه‌های مختلف ماس در طول دوره رشد تحت آزمایش نش خشکی

نمودار 9- تعداد برگ‌های بونه‌های مختلف ماس در طول دوره رشد تحت آزمایش نش خشکی
نمودار 12- اختلاف وزن غلاف زنوتپ‌های مختلف ماش تحت آزمایش تنش خشک‌کن

نمودار 11- وزن غلاف بونه‌های ماش در سطوح مختلف تنش خشک‌کن (LSD پر احتمال 0.05)

جدول 1- تجزیه و ارتباط ارتفاع نهایی بونه و وزن غلاف

<table>
<thead>
<tr>
<th>نمایگرگیری‌های ۱Ms</th>
<th>ارتفاع نهایی بونه</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۹۸۲/۹/۴**</td>
<td>۲۴۳۴/۳**</td>
<td>۳</td>
<td>تکرار (R)</td>
</tr>
<tr>
<td>۹۶۲۸/۵**</td>
<td>۱۰۲۳۴/۷**</td>
<td>۴</td>
<td>تیمارهای سطح خشک‌کن (فاکتور A)</td>
</tr>
<tr>
<td>۷۰۲۰/۶/۴**</td>
<td>۹۳۸۷/۳**</td>
<td>۲</td>
<td>تیمارهای ارقم (فاکتور B)</td>
</tr>
<tr>
<td>۴۹۹۹/۷/۸*</td>
<td>۵۴۴۴/۸*</td>
<td>۲۸</td>
<td>برهمکنش (A×B)</td>
</tr>
<tr>
<td>۲۷۵۸/۹</td>
<td>۳۷۴/۹</td>
<td>۱۱۷</td>
<td>اشتهای تیمارها</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۱۵۹</td>
<td>(Total) کل</td>
</tr>
</tbody>
</table>

منابع

1. صالحی، مصطفی‌آبادی، اثرِ تأثیر ذیل CO2 و تنش‌های شری، خشک‌کن و نیتروژن بر بخشی پارامترهای تیولوژیک و مورفولوژیک گند بهاره. پایان‌نامه کارشناسی ارشد گروه زراعت دانشکده کشاورزی دانشگاه فردوسی مشهد. ۹۵ صفحه.

2. رضایی، حمید و علیرضا کوچکی. ۱۳۸۷. تأثیر نشانه‌های پر رشد و در به خصوصیات جند گوشه رویکسUsersقام در شرایط گلخانه. مجله علوم و صنایع کشاورزی و منابع طبیعی، شماره ۱۴: ۸۹-۹۸.

