تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,358 |
تعداد دریافت فایل اصل مقاله | 54,843,966 |
On the modification of the preconditioned AOR iterative method for linear system | ||
Theory of Approximation and Applications | ||
مقاله 1، دوره 10، شماره 1، مرداد 2016، صفحه 1-12 اصل مقاله (267.34 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
H. Almasieh1؛ S Gholami2 | ||
1دانشگاه آزاد اصفهان. خوراسگان | ||
2دانشگاه آزاد خوراسگان | ||
چکیده | ||
In this paper, we will present a modification of the preconditioned AOR-type method for solving the linear system. A theorem is given to show the convergence rate of modification of the preconditioned AOR methods that can be enlarged than the convergence AOR method. | ||
مراجع | ||
[1] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. [2] A. D. Gunawardena, S. K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Lin. Alg. Appl. 154-156 (1991) 123-143. [3] A. Hadjidimos, Accelerated overrelaxation method, Appl. Math. Comput. 32 (1978) 149– 157. [4] T. Kohno, H. Kotakemori, Improving the modified Gauss-Seidel method for Z-matrices, Lin. Alg. Appl. 267 (1997) 113-123. [5] H. Kotakemori, H. Niki, N. Okamoto, Accelerated iterative method for Z-matrices, J. Comput. App. Math. 75 (1996) 87-97. [6] J. Li, T. Z. Huang, Preconditioned Methods of Z-matrices, Acta. Math. Sci. 25 (2005) 5-10. [7] W. Li, W. W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z- matrices, Lin. Alg. Appl. 317 (200) 227-240. [8] Y. Z. Song, Comparisons of nonnegative splittings of matrices, Lin. Alg. Appl. 154-156 (1991) 433-455. [9] Y. Z. Song, Comparison theorems for splittings of matrices, Num. Math. 92 (2002) 563- 591. [10] R. S.Varga, Matrix iterative analysis, prentice-hall, Englewood Cliffs, NJ, 1962; Springer series in computational mathematics, 27, Speringer-Verlag, Berlin,2000. [11] G. Wang, N. Zhang, F. Tan, A new preconditioned AOR method for Z-matrices, Wor. Aca. Sci. Engin. Tech. 67 ( 2010) 572-574. [12] M. Wu, L.Wang, Y.Song, Preconditioned AOR iterative method for linear systems, Appl. Num. Math. 57 (2007) 672-685. [13] D. M. Young, Iterative solution of large linear systems, Academic Press, New York, 1971. [14] Y. Zhang, T. Z. Huang, X. Liu, Gauss type preconditioning techniques for linear system, Appl. Math. Comput. 188 (2007) 612-633. | ||
آمار تعداد مشاهده مقاله: 622 تعداد دریافت فایل اصل مقاله: 571 |