Some Results for CAT(0) Spaces

Mehdi Asadia,1, S. Mansour Vaezpour b,2, Hossein Soleimanic,3

aDepartment of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
bDepartment of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.
cDepartment of Mathematics, Malayer Branch, Islamic Azad University, Malayer, Iran.

Received 5 February 2011; Accepted 18 May 2011

Abstract

We shall generalize the concept of $z = (1 - t)x \oplus ty$ to n times which contains to verify some their properties and inequalities in CAT(0) spaces. In the sequel with introducing of α-nonexpansive mappings, we obtain some fixed points and approximate fixed points theorems.

Keywords: CAT(0) space, Hyperbolic space, Fixed point.

2000 AMS Subject Classification: 05C05; 54H25.

1 Introduction

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subseteq R$ to X such that $c(0) = x$, $c(l) = y$, and $d(c(t), c(t_0)) = |t - t_0|$ for all $t, t_0 \in [0, l]$. In particular, c is an isometry and $d(x, y) = l$. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique, this geodesic is denoted by $[x, y]$. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every

1masadi@azu.ac.ir
2vaez@aut.ac.ir
3hsoleimani54@gmail.com
geodesic segment joining any two of its points.

A geodesic triangle \(\triangle(x_1, x_2, x_3) \) in a geodesic metric space \((X, d)\) consists of three points in \(X\) (the vertices of \(\triangle\)) and a geodesic segment between each pair of vertices (the edges of \(\triangle\)). A comparison triangle for a geodesic triangle \(\triangle(x_1, x_2, x_3) \) in \((X, d)\) is a triangle \(\triangle(x_1, x_2, x_3) := \triangle(\bar{x}_1, \bar{x}_2, \bar{x}_3) \) in the Euclidean plane \(\mathbb{E}^2\) such that \(d_{\mathbb{E}^2}(\bar{x}_i, \bar{y}_j) = d(x_i, y_j)\) for \(i, j \in \{1, 2, 3\}\).

A geodesic metric space is said to be a CAT(\(0\)) space if all geodesic triangles of appropriate size satisfy the following comparison axiom:

"Let \(\triangle\) be a geodesic triangle in \(X\) and let \(\overline{\triangle}\) be a comparison triangle for \(\triangle\). Then \(\overline{\triangle}\) is said to satisfy the CAT(\(0\)) inequality if for all \(x, y, \overline{\triangle}\) and all comparison points \(\bar{x}, \bar{y} \in \overline{\triangle}\),

\[
d(x, y) \leq d_{\mathbb{E}^2}(\bar{x}, \bar{y}).
\]

Definition 1.1. ([1]) A hyperbolic space is a triple \((X, d, W)\) where \((X, d)\) is a metric space and \(W : X \times X \times [0, 1] \to X\) is such that

\(W1\) \(d(z, W(x, y, t)) \leq (1 - t)d(z, x) + td(z, y)\)

\(W2\) \(d(W(x, y, t), W(x, y, s)) = |t - s|d(x, y)\)

\(W3\) \(W(x, y, t) = W(y, x, 1 - t)\)

\(W4\) \(d(W(x, z, t), W(y, w, t)) \leq (1 - t)d(x, y) + td(z, w)\)

for all \(x, y, z, w \in X\) and \(t, s \in [0, 1]\).

If \(x, y \in X\) and \(t \in [0, 1]\) then we use the notation \((1 - t)x \oplus ty\) for \(W(x, y, t)\). We shall denote by \([x, y]\) the set \(\{(1 - t)x \oplus ty : t \in [0, 1]\}\). A nonempty subset \(C \subseteq X\) is convex if \([x, y] \subseteq C\) for all \(x, y \in C\).

We remark that any normed space \((X, \|\cdot\|)\) is a hyperbolic space, with

\[
(1 - t)x \oplus ty := (1 - t)x + ty.
\]

Here we recall a couple of lemmas which will be used next.

Lemma 1.2. ([2, Lemma 2.4]) Let \((X, d)\) be a CAT(\(0\)) space. Then

\[
d((1 - t)x \oplus ty, z) \leq (1 - t)d(x, z) + td(y, z) \leq \max\{d(x, z), d(y, z)\},
\]

for \(x, y, z \in X\) and \(t \in [0, 1]\).

Lemma 1.3. ([2, Lemma 2.5]) Let \((X, d)\) be a CAT(\(0\)) space. Then

\[
d((1 - t)x \oplus ty, z)^2 \leq (1 - t)d(x, z)^2 + td(y, z)^2 - t(1 - t)d(x, y)^2,
\]

for all \(x, y, z \in X\) and \(t \in [0, 1]\).

In particular by Lemma 1.3 we have

\[
d(z, \frac{1}{2}x + \frac{1}{2}y)^2 \leq \frac{1}{2}d(z, x)^2 + \frac{1}{2}d(z, y)^2 - \frac{1}{4}d(x, y)^2,
\]

for all \(x, y, z \in X\), which is called (CN) inequality of Bruhat-Tits, as it was shown in [3]. In fact (cf. [4], p. 163), a geodesic space is a CAT(\(0\)) space if and only if it satisfies the (CN) inequality.
2 Main results

Throughout this section we let \(n \in \mathbb{N} \), \(z_1 = x \) and \(z_n = y \) until Definition 3.2.

Lemma 2.1. Let \((X, d)\) be a \(\text{CAT}(0)\) space. Then

1. Let \(x, y \in X \), \(x \neq y \) and \(z_i, z'_i \in [x, y] \) such that \(d(x, z_i) = d(x, z'_i) \) for all \(1 \leq i \leq n \). Then \(z_i = z'_i \) for \(1 \leq i \leq n \).

2. Let \(x, y \in X \), then for each \(\alpha = (\alpha_1, \cdots, \alpha_n) \in [0, 1]^n \) with \(\sum_{i=1}^n \alpha_i = 1 \) there exist points \(z_1, \cdots, z_n \in [x, y] \) and unique point \(z \in [x, y] \) such that \(d(z, z_i) = \alpha_i d(x, y) \) for \(1 \leq i \leq n \).

Proof. Since \(z_i, z'_i \in [x, y] \), there exist \(t_i, t'_i \in [0, l] \) such that \(c(t_i) = z_i \) and \(c(t'_i) = z'_i \). Thus \(d(x, z_i) = d(c(0), c(t_i)) = t_i \) and similarly \(d(x, z'_i) = t'_i \). Since \(d(x, z_i) = d(x, z'_i) \), we have \(t_i = t'_i \), and consequently \(z_i = z'_i \) for \(1 \leq i \leq n \), which proves (1).

To prove (2), by [2, Lemma 2.1(iv)], this is true for \(n = 2 \), because for \(\alpha = (\alpha_1, \alpha_2) \) with \(\alpha_1 + \alpha_2 = 1 \) there exists unique point \(z \in [x, y] \) such that \(d(x, z) = \alpha_1 l, d(z, y) = \alpha_2 l \) that for convention we had shown with \(z = \alpha_1 x + \alpha_2 y \).

Now by induction let it holds for \(n - 1 \) and choose \(\alpha = (\alpha_1, \cdots, \alpha_n) \in [0, 1]^n \) such that \(\sum_{i=1}^{n-1} \alpha_i = 1 \). Put \(\beta_i := \frac{\alpha_i}{1-\alpha_n} \) for \(1 \leq i \leq n - 1 \). Thus \(\sum_{i=1}^{n-1} \beta_i = 1 \) and by hypothesis of induction there exists unique point \(z' \in [z_{n-1}, z_n] \) such that \(d(z', z_i) = \beta_i l \) for \(1 \leq i \leq n - 1 \), now there exists unique point \(z \in [z', z_n] \) such that \(d(z, z_n) = \alpha_n l, d(z, z') = (1-\alpha_n) l \).

To prove (2) directly, let \(t_i = 1 - \alpha_n - \alpha_i, t = 1 - \alpha_n \in [0, 1] \) for \(1 \leq i \leq n \). Put \(z_i = c(t_i) \) and \(z = c(t) \) so \(d(z, z_i) = |t - t_i| l = \alpha_n l \) for \(1 \leq i \leq n \). For uniqueness, if \(d(z, z_i) = d(z', z_i) \) for \(1 \leq i \leq n \), then by (1) and \(i = 1 \), we have \(z = z' \). \(\square \)

Example 2.2. Let \(X = [0, 1] \) and put

\[
A = \left\{ (x, 0) : 0 \leq x \leq \frac{2}{3} \right\} \cup \left\{ \left(\frac{2}{3}, y \right) : -\frac{1}{6} \leq y \leq \frac{1}{6} \right\}.
\]

Define \(f : X \to A \subseteq \mathbb{R}^2 \) by

\[
f(x) = \begin{cases}
(x, 0), & 0 \leq x \leq \frac{2}{3}; \\
\left(\frac{2}{3}, x - \frac{2}{3} \right), & \frac{2}{3} \leq x \leq \frac{5}{6}; \\
\left(\frac{2}{3}, x - \frac{5}{6} \right), & \frac{5}{6} \leq x \leq 1.
\end{cases}
\]

So \(f \) is isometric homeomorphism. For instance let \(\alpha_1 = \frac{2}{3}, \alpha_2 = \alpha_3 = \frac{1}{6} \). Therefore \(z_1 = x = 0, z_2 = \frac{2}{3}, z_3 = y = 1, z = \frac{5}{6} \) and \(l = 1 \). Since \(t = 1 - \alpha_3 = \frac{5}{6} \) and \(t_2 = 1 - \alpha_3 - \alpha_2 = \frac{2}{3} \), so \(z_2 = c(t_2) = \frac{2}{3}, z = \frac{5}{6} \) and by homeomorphism we have \(z_1 = (0, 0), z_2 = \left(\frac{2}{3}, \frac{1}{6} \right), z_3 = \left(\frac{5}{6}, \frac{1}{6} \right) \) and \(z = \left(\frac{5}{6}, 0 \right) \). And also we have \(d(z, z_i) = \alpha_i l \), for \(1 \leq i \leq 3 \).
Notation: By the point z_α, we mean the unique point

$$z_\alpha = \alpha_1 z_1 \oplus \alpha_2 z_2 \oplus \cdots \oplus \alpha_n z_n$$

where $\alpha = (\alpha_1, \cdots, \alpha_n) \in [0, 1]^n$ such that $\sum_{i=1}^{n} \alpha_i = 1$ and $z_i \in X$ for $1 \leq i \leq n$.

Also z_α can be written as

$$z_\alpha = (1 - \alpha_n) z' \oplus \alpha_n z_n,$$

where $z' = \frac{\alpha_1}{1 - \alpha_n} z_1 \oplus \cdots \oplus \frac{\alpha_{n-1}}{1 - \alpha_n} z_{n-1}$ where $\alpha_n \neq 1$.

Remark 2.3. Let (X, d) be a $\text{CAT}(0)$ space, let $x, y \in X$ such that $x \neq y$ and $\alpha = (\alpha_1, \cdots, \alpha_n), \beta = (\beta_1, \cdots, \beta_n) \in [0, 1]^n$ with $\sum_{i=1}^{n} \alpha_i = 1 = \sum_{i=1}^{n} \beta_i$. Then

$$z_\alpha = z_\beta \iff \alpha = \beta.$$

Proof. This is true because,

$$d(z_\alpha, z_i) = d(z_\beta, z_i) \Rightarrow \alpha_i l = \beta_i l \Rightarrow \alpha_i = \beta_i,$$

for $1 \leq i \leq n$.

Theorem 2.4. Let (X, d) be a $\text{CAT}(0)$ space, let $x, y \in X$ such that $x \neq y$ and $d(x, y) = l$. Then

1. $[x, y] = \{z_\alpha | \alpha \in [0, 1]^n, \sum_{i=1}^{n} \alpha_i = 1\}$.

2. For all $z \in X$ the following holds:

$$(\exists z_1, \cdots, z_n \in [x, y] \text{ such that } \sum_{i=1}^{n} d(z, z_i) = d(x, y)) \iff z \in [x, y].$$

3. The mapping $f : [0, 1]^n \to [x, y], f(\alpha) = z_\alpha$ is continuous and bijective.

Proof. (1) The case of $n = 2$ is proved in [2, Lemma 2.1]. Now let $z \in [x, y]$. By induction, suppose there exists $\beta \in [0, 1]^{n-1}$, such that $\sum_{i=1}^{n-1} \beta_i = 1$ and $z = z_\beta$. Put $\alpha_i = \beta_i$ for $1 \leq i \leq n - 2$ and $\alpha_{n-1} = \alpha_n = \frac{\beta_{n-1}}{2}$. Therefore $\sum_{i=1}^{n} \alpha_i = 1$ and there exists $z' = c(\frac{\beta_{n-1}}{2} l)$ that $d(z', x) = (\sum_{i=1}^{n-2} \beta_i + \frac{\beta_{n-1}}{2}) l$ and $d(z, z') = \frac{\beta_{n-1}}{2} l$. Now $z' = (\sum_{i=1}^{n-2} \beta_i + \frac{\beta_{n-1}}{2}) z_\beta \oplus \frac{\beta_{n-1}}{2} y$ thus $z' \in [x, y]$ and $d(z, z') = \alpha_n l$.

To prove (2) let for every $z \in X$ there exist $z_1, \cdots, z_n \in [x, y]$ such that $\sum_{i=1}^{n} d(z, z_i) = d(x, y)$. Put $\alpha_i = \frac{d(z, z_i)}{l}$ where $z_i \in [x, y]$ and $1 \leq i \leq n$, so there exists z_α such that $z_\alpha = z$.

Conversely, if \(z \in [x, y] \) then \(z = z_\alpha \) for some \(\alpha \) and \(z_1, \ldots, z_n \) such that \(d(z, z_i) = \alpha_i d(x, y) \) so \(\sum_{i=1}^n d(z, z_i) = d(x, y) \).

To prove (3) applying (1) and Remark 2.3, we get that \(f \) is well defined and bijective. The continuity of \(f \) is obvious by induction, because \(f \) can be written as \(f(\alpha) = g(\beta) \oplus h(\alpha_n) \) where \(g(\beta) = z_\beta = \beta_1 z_1 \oplus \cdots \oplus \beta_{n-1} z_{n-1}, \beta_i := \frac{\alpha_i}{1-\alpha_n} \) for \(1 \leq i \leq n - 1 \) and \(h(\alpha_n) = \alpha_n z_n \). \(\square \)

Lemma 2.5. Let \((X, d)\) be a CAT(0) space. Then

1. \(d(z_\alpha, z) \leq \sum_{i=1}^n \alpha_i d(z_i, z) \leq \max\{d(z_i, z) : 1 \leq i \leq n\} \),
2. \(d(z_\alpha, z)^2 \leq \sum_{i=1}^n \alpha_i d(z_i, z)^2 \leq \max\{d(z_i, z)^2 : 1 \leq i \leq n\} \),
3. \(d(z_\alpha, z'_\beta) \leq \sum_{i,j=1}^n \alpha_i \beta_j d(z_i, z'_j) \leq \max\{d(z_i, z'_j) : 1 \leq i, j \leq n\} \),

for \(\alpha = (\alpha_1, \ldots, \alpha_n), \beta = (\beta_1, \ldots, \beta_n) \in [0,1]^n \) with \(\sum_{i=1}^n \alpha_i = \sum_{i=1}^n \beta_i = 1 \) and \(z, z_i, z'_j \in X \) for \(1 \leq i, j \leq n \) which \(z_\alpha = \alpha_1 z_1 \oplus \alpha_2 z_2 \oplus \cdots \oplus \alpha_n z_n, z'_\beta = \beta_1 z'_1 \oplus \beta_2 z'_2 \oplus \cdots \oplus \beta_n z'_n \).

Proof. By Lemma 1.2 it is true for \(n = 2 \). So by induction let

\[
z_\alpha = \alpha_1 z_1 \oplus \alpha_2 z_2 \oplus \cdots \oplus \alpha_n z_n
\]

where \(\alpha = (\alpha_1, \ldots, \alpha_n) \in (0,1)^n \) such that \(\sum_{i=1}^n \alpha_i = 1 \) and \(z_i \in X \) for \(1 \leq i \leq n \).

Put \(\gamma := \left(\frac{\alpha_1}{1-\alpha_n}, \ldots, \frac{\alpha_{n-1}}{1-\alpha_n} \right) \) that \(\sum_{k=1}^{n-1} \frac{\alpha_k}{1-\alpha_n} = 1 \) by Theorem 2.1 there exists \(v_\gamma \in [x, z_{n-1}] \) such that \(v_\gamma = \frac{\alpha_1}{1-\alpha_n} z_1 \oplus \cdots \oplus \frac{\alpha_{n-1}}{1-\alpha_n} z_{n-1} \) and we have \(z_\alpha = (1-\alpha_n) v_\gamma + \alpha_n z_n \) so

\[
d(z_\alpha, z) = d((1-\alpha_n) v_\gamma \oplus \alpha_n z_n, z)
\]

\[
\leq (1-\alpha_n) d(v_\gamma, z) + \alpha_n d(z_n, z)
\]

\[
= (1-\alpha_n) d\left(\frac{\alpha_1}{1-\alpha_n} z_1 \oplus \cdots \oplus \frac{\alpha_{n-1}}{1-\alpha_n} z_{n-1}, z \right) + \alpha_n d(z_n, z)
\]

\[
\leq \sum_{i=1}^n \alpha_i d(z_i, z)
\]

\[
\leq \max\{d(z_i, z) : 1 \leq i \leq n\}. \square
\]

This proves (1).

(2) can easily proved according to Lemma 1.3 and again by induction on \(n \geq 2 \). \(\square \)

Lemma 2.6. Let \((X, d)\) be a hyperbolic space. Then

\[
d(z_\alpha, z'_\beta) \leq \sum_{i=1}^n \alpha_i d(z_i, z'_i) \leq \max\{d(z_i, z'_i) : 1 \leq i \leq n\},
\]

for \(\alpha = (\alpha_1, \ldots, \alpha_n) \in [0,1]^n \) with \(\sum_{i=1}^n \alpha_i = 1 \) and \(z_i, z'_i \in X \) for \(1 \leq i \leq n \) which \(z_\alpha = \alpha_1 z_1 \oplus \alpha_2 z_2 \oplus \cdots \oplus \alpha_n z_n, z'_\alpha = \alpha_1 z'_1 \oplus \alpha_2 z'_2 \oplus \cdots \oplus \alpha_n z'_n \).
Proof. By the property of \((W4)\) it is true for \(n = 2\). The remaining is similar to the proof of the lemma 2.5. □

3 Fixed points and approximate fixed points for \(T_\alpha\) maps

In 2008 T. Suzuki [5], defined condition (C) for mappings on a subset of a Banach space, as following: "Let \(T\) be a mapping on a subset \(C\) of a Banach space \(E\). Then \(T\) is said to satisfy condition (C) if
\[
\frac{1}{2}\|x - Tx\| \leq \|x - y\| \Rightarrow \|Tx - Ty\| \leq \|x - y\|
\]
for all \(x, y \in C\)."

This condition is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness. In that paper, he has presented fixed point theorems and convergence theorems for mappings satisfying condition (C). Also Examples 1 and 2 in the same paper stated that there exists a map \(T\) which satisfies condition (C), but \(T\) is not nonexpansive, and there exists a map \(T\) which is quasi-nonexpansive, but it does not satisfy condition (C).

Recently B. Nanjaras, B. Panyanaka and W. Phuengrattana in [6], A. Razani and H. Salahifard in [7] and other mathematicians has proved some theorems according to single-valued mappings or multi-valued mappings which are satisfying Suzuki’s condition (C) in a \(CAT(0)\) space.

Some basic properties on condition (C) by [6, Propositions 3.2, 3.3], [7, Theorems 2.3, 2.7 and Corollary 2.8] and [8, Theorem 1.3] are:

\(P1\) ([6, Lemma 2.5]) Let \(\{x_n\}\) and \(\{y_n\}\) be bounded sequences in a \(CAT(0)\) space \(X\) and let \(\{\alpha_n\} \subseteq [0, 1)\) such that \(\sum_{n=1}^{\infty} \alpha_n = \infty\) and \(\limsup_{n} \alpha_n < 1\). Suppose that \(x_{n+1} = \alpha_n y_n \oplus (1 - \alpha_n) x_n\) and \(d(y_{n+1}, y_n) \leq d(x_{n+1}, x_n)\) for all \(n \in \mathbb{N}\). Then \(\lim_{n \to \infty} d(y_n, x_n) = 0\).

\(P2\) ([6, Proposition 3.2]) Let \(K\) be a nonempty subset of a \(CAT(0)\) space \(X\). If \(T : K \to K\) be a nonexpansive mapping, then \(T\) satisfies condition (C).

\(P3\) ([6, Proposition 3.3]) Let \(K\) be a nonempty subset of a \(CAT(0)\) space \(X\). If \(T : K \to K\) satisfies condition (C) and has a fixed point, then \(T\) is a quasi-nonexpansive mapping.

\(P4\) ([7, Theorem 2.3]) Let \(K\) be a bounded closed convex subset of a complete \(CAT(0)\) space \(X\). If \(T : K \to K\) satisfies the condition (C) and \(F(T) \neq \emptyset\), then \(F(T)\) is \(\Delta\)-closed and convex set.
Some Results for CAT(0) Spaces

17

P5 ([7, Theorem 2.7]) Let K be a bounded closed convex subset of a complete CAT(0) space X. If $T : K \to K$ satisfies condition (C), then $F(T)$ is nonempty.

P6 ([7, Corollary 2.8]) Let K be a bounded closed convex subset of a complete CAT(0) space X. If $T : K \to K$ satisfies condition (C), then $F(T)$ is nonempty, Δ-closed and convex.

P7 ([8, Theorem 1.3]) Let (X,d) be a convex subset of a CAT(0) space and $f : X \to X$ a quasi-nonexpansive map whose fixed point set is nonempty. Then $F(f)$ is closed, convex and hence contractible.

And now, we start our results by following definitions.

Definition 3.1. ([5]) Let T be a mapping on a subset K of a CAT(0) space (X,d). Then T is said to satisfy condition (C) if

$$\frac{1}{2}d(x,Tx) \leq d(x,y) \Rightarrow d(Tx,Ty) \leq d(x,y),$$

for all $x,y \in K$.

The following we will use this notation $T_\alpha = \alpha_1 T_1 + \cdots + \alpha_n T_n$ where $T_1, \cdots, T_n : X \to [x,y]$ for $1 \leq i \leq n$ and $\alpha = (\alpha_1, \cdots, \alpha_n) \in [0,1]^n$ a multiindex satisfying $\sum_{i=1}^n \alpha_i = 1$.

Definition 3.2. ([9-10]) Let $\alpha = (\alpha_1, \cdots, \alpha_n) \in [0,1]^n$ be a multiindex satisfying $\sum_{i=1}^n \alpha_i = 1$. The maps T_1, \cdots, T_n on X are said to be α-nonexpansive if

$$\sum_{i=1}^n \alpha_i d(T_i x, T_i y) \leq d(x,y),$$

for all $x,y \in X$.

Theorem 3.3. Let K be a bounded closed convex subset of a complete CAT(0) space (X,d). If $T_\alpha : K \to K$ is defined by $T_\alpha = \alpha_1 T_1 + \cdots + \alpha_n T_n$ which T_1, \cdots, T_n are selfmaps on K, which commute each other and satisfy condition (C), then T_α has a fixed point.

Proof. By $P5$, $F(T_i) \neq \emptyset$ for $1 \leq i \leq n$. We say $\bigcap_{i=1}^n F(T_i) \neq \emptyset$. By induction we assume that $L := \bigcap_{i=1}^{n-1} F(T_i) \neq \emptyset$. Let $x \in L$ so we have

$$T_n x = T_n(T_1 x) = T_1(T_n x),$$

thus $T_n x \in F(T_i)$ for $1 \leq i \leq n - 1$. Therefore $T_n x \in L$ hence $T_n(L) \subseteq L$. By $P6$, $F(T_i)$ nonempty and convex and since T_i satisfy the condition (C) by $P3$, T_i is a quasi-nonexpansive map and by $P7$, $F(T_i)$ closed and convex, for $(1 \leq i \leq n)$, therefore L and $F(T_n)$ are nonempty, bounded closed convex subsets of a complete
Thus $T : L \to L$ satisfies the condition of the $P4$, hence $T_n x$ has a fixed point in L, that is,

$$L \cap F(T_n) = \bigcap_{i=1}^{n} F(T_i) \neq \emptyset.$$

If we let $x \in \bigcap_{i=1}^{n} F(T_i)$, then

$$d(x, T_\alpha x) \leq \sum_{i=1}^{n} \alpha_i d(x, T_i x) = 0,$$

namely $x \in F(T_\alpha). \square$

Theorem 3.4. Let K be a bounded closed convex subset of a complete $CAT(0)$ space (X, d). If $T_\alpha : K \to K$ defined by $T_\alpha = \alpha_1 T_1 + \cdots + \alpha_n T_n$ which T_1, \ldots, T_n are selfmaps on K, which T_1 satisfies the condition (C) and $d(T_n x, x) \leq d(T_1 x, x)$ for every $x \in K$, then $\inf_{x \in K} d(x, T_\alpha x) = 0$.

Proof. Let $x_1 \in K$, define sequence $\{x_n\} \subseteq K$ by $x_{n+1} := t T_1 x_n + (1-t) x_n$ for $n \in \mathbb{N}$, where $t \in \left[\frac{1}{2}, 1 \right)$. Then by the assumption $\frac{1}{2} d(x_n, T_1 x_n) \leq t d(x_n, T_1 x_n) = d(x_n, x_{n+1})$ for $n \in \mathbb{N}$ hence $d(T_1 x_{n+1}, T_1 x_n) \leq d(x_{n+1}, x_n)$. So by $P1$ we have $\inf_{x \in K} d(x, T_1 x) = 0$. So

$$d(x, T_\alpha x) \leq d(x, T_1 x) + d(T_1 x, T_\alpha x),$$

$$= d(x, T_1 x) + \alpha_1 d(T_1 x, T_\alpha x),$$

$$\leq d(x, T_1 x) + d(T_1 x, x) + d(x, T_\alpha x),$$

$$\leq 3d(x, T_1 x),$$

therefore there exists $\{x_n\} \subseteq K$ such that $d(x_n, T_1 x_n) \to 0$ as $n \to \infty$ thus $d(x_n, T_\alpha x_n) \to 0$. □

Corollary 3.5. ([7, Lemma 2.5]) Let K be a bounded closed convex subset of a complete $CAT(0)$ space (X, d). If $T : K \to K$ satisfies the condition (C), then there exists an approximate fixed point sequence for T, i.e., $\inf_{x \in K} d(x, T x) = 0$.

Acknowledgment

This research has been supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran. The first author would like to thank this support.

References

