تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,415 |
تعداد دریافت فایل اصل مقاله | 55,444,983 |
Random fixed point of Meir-Keeler contraction mappings and its application | ||
Theory of Approximation and Applications | ||
مقاله 4، دوره 7، شماره 1، مرداد 2013، صفحه 63-67 اصل مقاله (341.05 K) | ||
نوع مقاله: Research Articles | ||
نویسنده | ||
H. Dibachi* | ||
Department of Mathematics, Islamic Azad University, Arak-Branch, Arak, Iran. | ||
چکیده | ||
In this paper we introduce a generalization of Meir-Keeler contraction for random mapping T : Ω×C → C, where C be a nonempty subset of a Banach space X and (Ω,Σ) be a measurable space with being a sigma-algebra of sub- sets of. Also, we apply such type of random fixed point results to prove the existence and unicity of a solution for an special random integral equation. | ||
مراجع | ||
[1] A. Meir, E. Keeler. A theorem on contraction mapping, J. Math. Anal. Appl. 28 (1969), 326-329. [2] A. Branciari. A xed point theorem for mapping satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), 531-536. [3] I. Beg, Minimal displacement of random variables under lipschitz random maps, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Cen- ter 19(2002), 391397 [4] S. Plubtieng, P. Kumam, R. Wangkeeree, Approximation of a common random xed point for a nite family of random operators, Inter. J. Math. Math. Sci. Volume 2007, Article ID 69626, 12 pages | ||
آمار تعداد مشاهده مقاله: 371 تعداد دریافت فایل اصل مقاله: 371 |