| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,619,784 |
| تعداد دریافت فایل اصل مقاله | 56,295,693 |
On The Perimeter of an Ellipse | ||
| Theory of Approximation and Applications | ||
| مقاله 1، دوره 6، شماره 2، اسفند 2012، صفحه 1-6 اصل مقاله (362.73 K) | ||
| نوع مقاله: Research Articles | ||
| نویسنده | ||
| A. Ansari* | ||
| Department of Mathematics, Islamic Azad University, Gachsaran-Branch, Gachsaran, Iran. | ||
| چکیده | ||
| Let E be the ellipse with major and minor radii a and b respectively, and P be its perimeter, then P = lim 4 tan(p/n)(a + b + 2) Σ a2 cos2 (2k-2)Pi/n+ sin2 (2k-2)Pi/n; where n = 2m. So without considering the limit, it gives a reasonable approxi- mation for P, it means that we can choose n large enough such that the amount of error be less than any given small number. On the other hand, the formula satises both limit status b→a and b→0 which give respectively P = 2a and P = 4a. | ||
| مراجع | ||
|
[1] Gerard P. Michon, www.numericana.com/answer/ellipse.htm [2] Gerald B. Folland, Real Analysis, Modern Techniques And Their Applications, John Wiley And Sons, Second Edition. [3] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Third Edition [4] George B. Thomas, Ross L. Finney Calculus And Analytic Geometry, Addison- Wesley, Ninth Edition. | ||
|
آمار تعداد مشاهده مقاله: 475 تعداد دریافت فایل اصل مقاله: 624 |
||