اثرات ضد قارچی تراف نانوسیلوئور بر روی تخم ماهی قزل آلاز رنگین کمان (Oncorhynchus mykiss) و لارو تا وزن یک گرمی مهدي كهيش اسفندياري(1)، مهدي سلطاني(2)، مير مسعود سجادی(3) m_esfandiary60@yahoo.com
1- دانش آموخته دانشگاه آزاد اسلامی واحد بندر عباس، صندوق پستی: 1311-1311-1311
2- دانشکده دامپزشکی دانشگاه تهران، صندوق پستی: 1415-1415-1415
3- استادیار و عضو هیئت علمی دانشگاه هرمزگان، صندوق پستی: 1395

چکیده

به منظور ارزیابی تراف نانوسیلوئور در کنترل آلودگی های ناشی از میکروقاتسم‌های با تغییرات کارگاهی پرورش قزل آلاز رنگین کمان، استحصال تخمک و اسپرم از ماهیان مولد و سالمه مطلق روش معمول کارگاهی صورت گرفت. میزان پیدا کردن های حاصله تا مرحله چشم زدگی و از مرحله چشم زدگی تا مرحله تفریخ تخم ها و نیز میزان پیدا کردن آرزو و وزن 2/1-1 گرم در یک تراف مورد سنجش قرار گرفت. در این مطالعه میزان فاکتورهای

فیزیکی و شیمیایی آب مورد استفاده شامل درجه حرارت (12/5 درجه سانتی‌گراد) و درجه اکسیدکنر (7/5 میلی گرم در لیتر) و درجه سختی (70 میلی گرم در لیتر کربنات کلسیم) بوده است. در این مطالعه میزان 1800 گرم تخم در تراف حاوسیلوئور (نانوسیلوئور) به ترتیب 9/6 و 91/8 درصد بوده که از نظر آماری متفاوت از مقامه با گروه شاهد در باین تخم تفاوت معنی‌داری داشت (P<0/05) ولی میزان پیدا کردن آرزو و وزن در گروه تراف نانوسیلوئور به ترتیب 9/6 و 91/8 درصد بوده که از نظر آماری متفاوت با گروه شاهد در باین تخم تفاوت معنی‌داری داشت (P<0/05). با توجه به نتایج مذکور و خواص خاوران این نانوسیلوئور از قبل خوراکی بودن، غیر مورد پذیرفتن نبود و در نظر گرفت.

نتایج کلیدی: تخم قزل آلاز رنگین کمان (Oncorhynchus mykiss) تراف نانوسیلوئور و شاهد، لارو قزل آلاز رنگین کمان.
1. مقدمه

رسید (۴). باعثی به گسترش فعالیت‌های تکثیر و پروپرس سایه‌ده‌کننده در کشور، مصرف‌رسانی در مصرف افزایش تولید و اجرای پروپرس سایه‌ده‌کننده است. نجات کافی این کشورها مؤید این موضوع است که علی‌رغم پیچیدگی‌های درمان پیش‌بینی‌ها پس از حادثه شدن و رعایت سیاست‌های پیش‌بینی‌ها در مراکز تکثیر و پروپرس سایه‌ده‌کننده مشورت و پیش‌بینی‌ها به منظور پیشگیری از وروار آلودگی به محیط آبی سیاسی است (۶۰).

در این میان برخی از میکروگانیزم‌های بالقوه بیماری زا، مانند باکتری‌ها، فارماکه و نکاتی از این جمله عوامل مشکل زایی هستند که معمولاً در کارگاه‌های تکثیر و پروپرس آبزیان و یا کاهش استاندیاری، مصرف افزایش تولید و پیش‌بینی‌های پیش‌بینی‌ها به منظور پیشگیری از وروار آلودگی به محیط آبی سیاسی است (ست).

در راستای تحقیقات اخیر زندگی انسان، علم نانوتکنولوژی توسعه پافتم و تقریباً در همه رشته‌های علمی، باعث بروز تحقیقات متفاوتی از مطالعات مختلفی شده است. یکی از این مطالعات، ایجاد کردن فنی‌شناسی‌های نانو تکثیر و پروپرس سایه‌ده‌کننده در روش‌های پیش‌بینی‌ها ایجاد کرده است. از جمله این مواد می‌توان به نانوپودر اشاره نمود.

۱ و ۲ - سازمان غذا و داروی آمریکا (Food and Drug Administration)
نشانه‌هایی از آن بافت می‌شود. واژه نانو (Nano) کلمه‌ای است که معنی کوچک است. نانوفیزیک، دستیابی فلوآور کار بر نانوذرات قمر تولید کرده. علاوه بر این پژوهش‌گران ایرانی، مدولالیت آنتی-پایپیلار شست و فراز زخم و پاتوسمای راریتیمی با استفاده از نانوذرات قمر تولید گردند. علاوه بر آن، این مودبای نانوذرات قمر با تحقیقاتی در مورد قمر نانو (Nanogold) و نانوژیر (Nanozyme) نشان می‌دهد که این مودبای نانوذرات قمر تولید گردن‌ها یکی از مدل‌های مشابه و قابل توجهی از نانوذرات قمر است و در مورد تحقیقات نانوژیر، نانوژیر (Nanozyme) و نانوژیر (Nanozyme) استفاده می‌کنند. در مطالعه‌ای که نانوذرات قمر می‌تواند به عنوان یک کنترل ایفای نقش می‌کند. همچنین در این مطالعه، نانوذرات قمر به عنوان یکی از سطوح به عنوان یکی از روش‌های دندانپزشکی به کار گرفته شده‌است. در این مطالعه، نانوذرات قمر به عنوان یکی از روش‌های دندانپزشکی به کار گرفته شده‌است. در این مطالعه، نانوذرات قمر به عنوان یکی از روش‌های دندانپزشکی به کار گرفته شده‌است. در این مطالعه، نانوذرات قمر به عنوان یکی از روش‌های دندانپزشکی به کار گرفته شده‌است.
مواد و روش‌ها

تهیه مولود و استحصال تخم
از مولودین قزل آلالی ۴-۵ سال بر اساس روش اعمال دوره تمرینی به‌منظور تهیه شده از کازگاه‌های تکنیک بی‌بلوک فعال، میکروپورشهای سخت و دندهای لازم برای درمان بی‌کاری، تخم‌های یکی از هر دو گونه تخم‌های دستکاری شده در استان لرستان شهرستان شاهرود بر شرکت‌های ماهان و طی ایام بهار و گزارش‌های استادی ۱۳۸۷ از انجام مولودین نر و ماده و انجام معاونتی لازم، نسبت به جدایی مولودین رشد ادامه ادامه از همکاری و تحقیق‌هایی که انجام شده‌اند نیز نیز به صورت تصادفی انجام پذیرفت و تخم‌های مربوط به همه تیمارها هم‌زمان استحصال و استفاده شدند. بیماری در لقح خشکی، اسپرم و تخم‌های دوران انجام مولودین نمی‌گردد. این کار به صورت یک‌نفره انجام گرفت. سپس اسپرم نرها به آن‌ها اضافه شد. در انجام

باید خاطرنشان کرد که انجام تخم نر و ماده به صورت تصادفی انجام پذیرفت و تخم‌های مربوط به همه تیمارها هم‌زمان استحصال و استفاده شدند. بیماری در لقح خشکی، اسپرم و تخم‌های دوران انجام مولودین نمی‌گردد. این کار به صورت یک‌نفره انجام گرفت. سپس اسپرم نرها به آن‌ها اضافه شد. در انجام

کيفيت آب و سير شرایط تغییر دادن تغییر و

رشد لاروها

برای انجام این مطالعه، کلیه شرایط معمول کازگاه‌های در مرکز تکنیک مربوطه مورد استفاده قرار گرفت. به‌خصوص اقداماتی مانند کنترل بالا آب رساه، مراقبت از جلوگیری از تشیب نور در دوران انکوباسیون تخم و عدم دستکاری تخم و نگهداری آب ورودی رحیم ها و ترافی های لاروها به طور مرتقب صورت گرفت. آب کازگاه‌های مرکز تکنر شامل آب رنگی و درجه حرارت ۱۳/۲ و ۱۳/۲ درجه سانتی‌گراد، اکسیژن ۸-۹ یلی‌گرم در لیتر و دی اکسید کربن ۲۵-۷۸ میلی‌گرم در لیتر، آمونیاک کمتر از ۱ میلی‌گرم در لیتر و نتیجه کمتر از ۸/۷ میلی‌گرم در لیتر داشته و میزان آب

۶۶
شرح فعالیت ها و عملیات روزانه

24 ساعت پس از انتقال خانها به ترافیک، به وسیله شیلنگ (پوآر) تخم های لاجح نیافته و سرفه رنگ جدا شدند. پس از طی 16 روز تخم ها شروع به چشم زدن گرندند. پس از چشم زدنگی تخم های هفت تخم های حرارتی زده و تخم های سفید شده توسعه شیلنگ (پوآر) به طور روزانه جمع آوری می شدند. تخم های جمع آوری شده، وزن می شدند و از میزان اولیه تخم ها کمر می گشتند.

پس از گذشت 11-10 روز پس از مرحله پچمگی و 46 روز پس از لایح تخم های تفریخ شدند و لاروها که کمک به آنها چسبیده بوداز، از تخم های خارج شدند. در این زمان نیز تلفات به طور روزانه به وسیله بنس و با شیلنگ (پوآر) جمع آوری می شدند و تعداد تلفات شدرده و از تعداد کل لاروها کم می شد. بعد از گذشت 14-12 روز

وزن ماهی

\[
\text{وزن ماهی} = \frac{\text{تعداد ماهی}}{\text{میانگین وزن هر ماهی}}
\]

برای تعیین میزان غذا، بیوماس ماهی در ضریب غذا دهی ضریح شد.

میانگین وزنی هر ماهی \(\times\) (مجموع تلفات \(\div\) تعداد کل ماهی ها) = بیوماس

پس از حدود 3 ماه از لایح تخمها وزن لاروها به حدود \(0.5\) گرم رسید که کابان آزمایشیان این مرحله بود.

تعیین درصد تفریخ تخم

تعداد تخم تلف شده تا مرحله تفریخ \(\div\) تعداد تخم اولیه = تعداد تخم تفریخ شده

تعداد تخم اولیه \(\times\) (تعداد تخم تفریخ شده) = تعداد تخم تفریخ

تعیین درصد بقا لاروها تا وزن یک گرم و یا بالای یک گرم

\[
\text{تعیین درصد بقا لاروها تا وزن یک گرم و یا بالای یک گرم} = \frac{\text{تعداد لاروها پس از تفریخ}}{\text{آزمایش}}
\]

\[
\text{تعیین درصد بقا لاروها تا وزن یک گرم و یا بالای یک گرم} = \frac{\text{تعداد لاروها پس از تفریخ}}{\text{آزمایش}}
\]

\[
\text{تعیین درصد بقا لاروها تا وزن یک گرم و یا بالای یک گرم} = \frac{\text{تعداد لاروها پس از تفریخ}}{\text{آزمایش}}
\]

67
آنالیز آماری

نتایج حاصله با استفاده از برنامه Excel و آنالیز واریانس یک طرفه (ANOVA) مقایسه و اختلاف مربوطه در حد 0/05 P=0/05 محاسبه گردید.

2. نتایج

نتایج تلفات خم از زمان لقاح تا مرحله چشمه‌دگی:

نتایج حاصل از تلفات خم تا مرحله چشمه‌دگی را برای تراف نانوسیلور و شاهد در جدول (1) نشان داده است.

جدول 1: میزان تلفات و چشمه‌دگی خم در تراف های نانوسیلور و شاهد

<table>
<thead>
<tr>
<th>مقدار</th>
<th>تعداد تخم تأخیر اولیه (گرم)</th>
<th>تعداد تخم شده تا چشمه‌دگی اولیه (گرم)</th>
<th>تعداد تخم شده تا چشمه‌دگی تحقیق (گرم)</th>
<th>تعداد تخم شده تا چشمه‌دگی تحقیق (درصد)</th>
<th>تعداد تخم شده تا چشمه‌دگی اولیه (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراف نانوسیلور</td>
<td>1862</td>
<td>24365</td>
<td>5583</td>
<td>7896</td>
<td>11788</td>
</tr>
<tr>
<td>شاهد</td>
<td>1748</td>
<td>2672</td>
<td>526</td>
<td>7445</td>
<td>1336</td>
</tr>
</tbody>
</table>

نتایج مجموع تلفات خم و میزان چشمه‌دگی آن تا مرحله تخم تشریح:

با توجه به جدول (1) می‌توان دریافت که مجموع تلفات

7465 تخم تا مرحله تخم در تراف نانوسیلور 528 گرم برای

عدد تخم بود در حالت که برای تراف های شاهد مجموعا

1396 گرم تخم برای 19684 عدد تخم بود. به عبارت دیگر میزان

پازمان‌دگی تخم پرای تراف نانوسیلور 1940 و

نتایج تلفات خم از مرحله چشمه‌دگی تا مرحله تخم تشریح ها:

نتایج حاصل از تلفات خم از مرحله چشمه‌دگی تا تخم ها در جدول (1) نشان داده شده است. با توجه به تلفات بیشتر تخم در قارچی تراف نانوسیلور 5583 عدد و برای شاهد 4785/74 عدد.
است (P<0/05) به گونه‌ای که با توجه به تعداد تخم اولیه برای 21727 نیک از گروه‌های تیمار و شاهد، در مجموع میزان درصد بازمانده‌گی تخم در مرحله تخم‌بری تراف نانوسلولور (P<0/05) نشان می‌دهد که تا 4 روز قبل از تحقیق از اختلاف معنی‌داری برخوردار بوده است. (P>0/05).)

برای تراف های شاهد 2750 عدد بود. مقایسه آماری روند تلفات (مقدار 3) تعداد می‌دهد که تا 4 روز قبل از تحقیق از اختلاف معنی‌داری دری در تراف نانوسلولور (P<0/05) بعین باعث می‌شود میزان بیشتر تخم در تراف های نانوسلولور در طی دوران انکوباسیون تا مرحله تخم‌بری تخم به طور معنی‌داری بیشتر از تراف های شاهد بوده.

نتایج مقایسه میزان تلفات پیش از مرحله تخم‌بری:

نتایج حاصل از بقاء لارو تا یک گرمی در جدول 2 آمده است. بر اساس نتایج مذکور میزان تلفات لارو در تراف نانوسلولور جمعاً 1262 عدد (0/422) در حالیکه برای شاهد جمعاً برای 32750 عدد (12/027) لارو بوده است (شکل 2). به عبارات 91/8 درصد (15529 عدد) می‌باشد در حالیکه برای شاهد برای 87/34 درصد (18977 عدد) بود.

نتایج مقایسه بازمانده‌گی لاروها پس از تخم‌بری تا وزن یک گرمی در تراف‌های نانوسلولور و شاهد (معمولی) فاقد اختلاف معنی‌دار بوده است (P>0/05).

نتایج مقایسه: میزان تلفات تخم پیش از مرحله تخم‌بری در تراف های شاهد و بازمانده‌گی لاروها در تراف نانوسلولور برای 91/8 درصد (15529 عدد) می‌باشد در حالیکه برای شاهد برای 87/34 درصد (18977 عدد) بود.

نتایج مقایسه بازمانده‌گی لاروها پس از تخم‌بری تا وزن یک گرمی در تراف‌های نانوسلولور و شاهد (معمولی) فاقد اختلاف معنی‌دار بوده است (P>0/05).
جدول ۲: نتایج حاصل از تلفات و بازماندگی لارو قزل آلای تولیدی تا وزن یک گرمی

<table>
<thead>
<tr>
<th>تعداد لارو بالقوه مانده (درصد)</th>
<th>تعداد لارو تلف شده (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراف ناپسرلو</td>
<td>تراف ناپسرلو</td>
</tr>
<tr>
<td>16920 (67/12)</td>
<td>1391 (5/15)</td>
</tr>
<tr>
<td>2750 (16/78)</td>
<td>15529 (12/78)</td>
</tr>
</tbody>
</table>

شکل ۲: مقایسه ی نتایج میانگین میزان تلفات لارو قزل آلای (تعداد)

از مرحله تفریخ تا وزن یک گرمی پروش داده شده در تراف های ناپسرلو و شاهد

نتایج وزن کن (بیومتری) لاروها

نتایج بیومتری لاروها از پروش داده شده در تراف ناپسرلو و تراف شاهد (معمولی) در شکل ۳ نشان داده شده است. با توجه به نتایج مذکور در انتهای آزمایش (آخرین بیومتری) میانگین وزن بچه ماهیان پروش داده شده در تراف...
نختم به طور معنی داری بیشتر از تراف های شاهد بود (P<0/05).

البته اگر به میزان پایمان‌گذاری لاروها پس از تفریخ تا مرحله یک گرمی دقت شود می‌توینم که اختلاف معنی‌داری بین تراف نانوسیلور و تراف های شاهد وجود ندارد (P>0/05).

علاوه بر این از نظر مقایسه وزنی تا یک گرمی می‌توان گفت که لاروها تراف نانوسیلور از رشد بیشتر و مطلوب تری نسبت به شاهد بخوددار بودند. هرچند که این رشد اختلاف معنی داری نداشت ولی در کل لاروها تغییرات شدید در تراف نانوسیلور و وزن بیشتر نسبت به لاروها همسان خود در تراف های شاهد داشتند.

налحه است که استفاده از موارد شیمیایی نظیر مالاشیت گرین یافتن داروی جایگزین مناسب امری ضروری است. پیشنهادی است از مواد گیاهی و با ترکیباتی که کمترین مشکل زیست محیطی را در داشتن و ارسال گونه‌های پروشی نیز واجد حداقل عارضه باشد، یکی از نباخته‌ای امروز مراکز تکنیکی‌می‌باشد.

بر اساس نتایج بدست‌آمده میزان تلفات تراف نانوسیلور نسبت به شاهد منفی تا مرحله چپ چپ دمای تیپ و کمتر بوده است به طوری که اختلاف معنی‌داری بین این تیمار با شاهد مشاهده گردد (0/05). همچنین مجموع تلفات نختم تا مرحله تفریخ یک تراف نانوسیلور و شاهد مقایسه گردد که مشاهده شد ۸ روز قبل از تفریخ اختلاف معنی‌داری بین تیمار و شاهد مشاهده گردد (P<0/05). به عبارت دیگر میزان بالا نختم در تراف‌های نانوسیلور در طی دوران انکوباسیون تا مرحله تفریخ
با توجه به اثبات سوء آن، عدم استفاده از این ماده در مراکز تکثیر کشور می‌باشد. اگری که طریقی در برناهای کاری دستگاه‌های اجرایی و نظارتی قرار گیرد، پس باید سعی به سرآمد و فیزیکی میزان متغیرات زیست باشد. و کمترین عوارض جانبی را برای صعوب آتی پوری داشته باشد. در این میان باید از مودی که در میان ماحصل زیست است و برای انسان و آنلاین عفونت می‌باشد. (می‌باشد (۹)).

ابنی از این مورد تابیدن پوشی کردن که خواص ضد قارچ و ... باکتری‌های نانوسیست توسط افتراق ضد جمله ... و ... همکاران (۲۰۰۲) و ... همکاران (۲۰۰۷) و See و ... و Karen و ... همکاران (۲۰۰۷) و Asharani و ... و ... همکاران (۲۰۰۲) و kuk و kim (۲۰۰۷) همکاران (۲۰۰۵) Breytenbach و (۱۹۸۸) Wood ... و ... مورد مطالعه قرار گرفته است. (۱۵،۱۴،۱۳،۱۶،۱۱، ۱۲ و ۹)

ابنی از نظر تحقیقی و کاربرد نانوسیست، بخصوص تراف نانوسیست و به عنوان ماده ضد باکتری و ضد قارچ هیچگونه فعالیتی در ایران انجام نشده بود و می‌توان از مطالعه حاضر به عنوان اولین پژوهش در این زمینه نام برد.

در خانمه باید اینکه در خاطر نشان کردن که ممکن است با تغییر در میزان نانوسیست بکار رفته در تراف نانوسیست و نیز استفاده از اشکال مختلف نانوسیست از جمله سرامیک، رنگ، الیاف، کلوتاند و ... بانی به ناحیه مطلوبی دست یافته‌اند تا در نتیجه کارآیی و امید زیستی و بهداشتی مراکز تکثیر و پرورش در سطح بالاتری نسبت به سطح کنونی قرار گیرد.

علاوه بر این‌ها می‌گردد که این ماده در مراکز تکثیر به حیال ماهی ممکن است این استفاده از گردد تا انسانها بتوانند از کارآیی و امید زیستی و بهداشتی مراکز تکثیر و پرورش در سطح بالاتری نسبت به سطح کنونی قرار گیرد.

مراجع

5. 2- رسوالت، ام. رضاپوری، 1380. مقایسه تأثیر ضد میکروبی آمپی سیلین و آویشن شیریزی. مجله پژوهش حیاتی. ص: 225-219
6- شریفی روشنی، مصطفی. 1374. نشخیص، پیشگیری و درمان بیماری‌های مامات. چاپ اول. معاونت تکثیر و پرورش آژان. صفحه 256
7- شریفی روشنی، م. 1382. بررسی کاربرد برخی اساس‌های گیاهی در کنترل آتودیگی‌های قارچی تخم ماهیان قبل آن. دانشگاه تبریز. صفحه 12
8- 5- حمایی، م. 1382. کسب آزمون بی‌طرف کولین استراز رنگ نانوتغییرات. دومن همایش دانشجویی آن. آوری نانو. صفحه 7
9- عرفانی فریق. 1385. تاریخچه نانو. مقاله علمی .www.Articles.ir
10- کتاب کارکردهای نانو سیست. شرکت نانو نصب پارس .WWW.Nanocid.com

Antifungal effect of nanosilver trauhp
on Rainbow trout egg and larvae up to 1 gr

kahiesh esfandiary M.(1)*; Soltani M.(2); sajadi M.M.(3)
M_esfandiary60@yahoo.com
1-Islamic Azad University Bandar Abbas Branch,P.O.Box:7467147158 Bandar Abbas,Iran
2-fisheries departemen, Hormozgan university - BandarAbbas
3-faculty of Reterinary science, Tehran University,P.O.Box:14155-6452 Tehran. Iran

Abstract

Nanosilver trauhp were used to assess its effects on rainbow trout egg hatchability and survival percent of larvae up to 1-1.2 body weight using spring water at 12.5-13.2 c, 2 mg/l, ammunia <0.01, nitrit <0.1 and , dissolved oxygen 8-9 mg/l , carbon dioxide 7Total hardness was about 170 mg/l Caco3. Nanosilver trauhp was provided in four replicates but normal control without any treatment was also included in three replicates. In this study, the amount of 1800 gr eggs incubated in the nanosilver trauhp. Results of egg survival and larva to 1 gr in the nanosilver trauhp respectively, was 69.4 and 97.8 percent, statistically, compared to the control group, difference in survival of the eggs had significantly (P<0/05) .but in larva survival to 1 garam with control group, difference wasent significant(P>0/05) .according to the results above and extraordinary properties of nanosilver as food being non harmful,environmental friendly and etc and also ill effects and prohibition of malachite green can considered nanosilver trauhp for suitable alternative of malachite green.

Keywords: Rainbow trout egg(Onchorhynchus mykiss), Rainbow trout larva, nanosilver trauhp, normal control.