| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,559,873 |
| تعداد دریافت فایل اصل مقاله | 56,268,180 |
Seasonal Autoregressive Models for Estimating the Probability of Frost in Rafsanjan | ||
| Journal of Nuts | ||
| مقاله 7، دوره 03، 03,04، اسفند 2012، صفحه 45-52 اصل مقاله (2.19 M) | ||
| شناسه دیجیتال (DOI): 10.22034/jon.2012.515721 | ||
| نویسندگان | ||
| A. Hosseini* 1؛ M.S. FallahNezhad1؛ Y. ZareMehrjardi1؛ R. Hosseini2 | ||
| 1Department of industrial engineering, Yazd University, Yazd, Iran | ||
| 2Division of Biostatistics, University of Southern California, USA | ||
| چکیده | ||
| This work develops a statistical model to assess the frost risk in Rafsanjan, one of the largest pistachio production regions in the world. These models can be used to estimate the probability that a frost happens in a given time-period during the year; a frost happens after 10 warm days in the growing season. These probability estimates then can be used for: (1) assessing the agroclimate risk of investing in this industry; (2) pricing of weather derivatives. Autoregressive models with time-varying coefficients and different lags are compared using AIC/BIC/AICc and cross validation criterions. The optimal model is an AR (1) with both intercept and the “autoregressive coefficients” vary with time. The long-term trends are also accounted for and estimated from data. The optimal models are then used to simulate future weather from which the probabilities of appropriate hazard events are estimated. | ||
| کلیدواژهها | ||
| Pistachio؛ Frost؛ Weather derivative؛ Minimum temperature؛ Time-varying autoregressive coefficients | ||
|
آمار تعداد مشاهده مقاله: 871 تعداد دریافت فایل اصل مقاله: 604 |
||