اثر تنش شوری ناشی از کلرید سدیم بر غله‌ت هنار در برج گندم در شرایط آب کشت

فصل‌های بام شاسی گیاهان، جلد 11، شماره 2، صفحات 40-31 (تبثیت 1334)

هادی حسینی

اعظم رحمی آقایی کامرانی

مدرس گروه علوم و مهندسی کشاورزی دانشگاه پیام نور

شمار آهذ ایران تهران

شناسه الکترونیک: maghaleh110@yahoo.com

ناشنال کرونوکی:

چکیده

شویی آب و هوا از مهم‌ترین موانع افزایش تولید محصولات کشاورزی در جهان به ویژه مناطق خشک و نیمه خشک می‌باشد. این تحقیق به مکان عینی اثر میزان غلظت عناصر در گندم در شرایط آب کشت ویژه‌ای از میزان مصرف کلرید سدیم در محیط کشت می‌گردد. تیمارها شامل شوری در بهتر سطح 0، 20، 40، 60 میلی‌مولار کلرید سدیم در محیط کشت پرلیت و تیمار کوده شامل اوره NPK جامد و NPK محلول بوده و سطح مختلف شوری بر محیط‌های کلروفیل و درصد نیتروژن بزر می‌شود. شوری تأثیر سه‌گانه مشخصی باعث افزایش کلروفیل شد ولی پس از آن به علت اثرات شوری بر کلروفیل و تحریک کلروفیلاستها، کاهش یافت. همچنین شوری باعث گسترش نیتروژن بزرگ شد. کاهش مقدار نیتروژن در ادامه‌های دوازده‌ماهه ویژه‌ای از میزان غلظت نیتروژن بزر می‌گردد. سطح شوری به ترتیب مرتبه به سطح شوری صفر همراه با کود اوره و سطح 60 میلی‌مولار شوری همراه با اوره که احتمالاً به دلیل میزان بالای سدیم و رابطه کلر به سدیم توسط گیاه است. مهم‌ترین اثر شوری افزایش غلظت سدیم در بین گیاهان است. کاهش جذب نیتروژن و کاهش رشد و عملکرد گیاه از نتایج افزایش حضور سدیم است. حداکثر غلظت کلسیم در تیمار شوری 40 میلی‌مولار همراه با کود NPK جامد مشاهده گردید. مطالعه نتایج به دست‌آمده در شرایط اعمال شوری استفاده از کود NPK محلول NPK مشاهده گردید.

کلمات کلیدی:

- سطح شوری
- عناصر غذایی
- محیط کلروفیل
- حیدروپونیک

شناسه مقاله:

شماره مقاله: 1391

تاریخ پذیرش: 1394/03/30

تاریخ دریافت: 1394/03/30

مطالعه نتایج به دست‌آمده در شرایط اعمال شوری استفاده از کود NPK محلول NPK مشاهده گردید.
مقدمه
شوری یکی از اصلی‌ترین تنش‌های محیطی تأییرگذار بر رشد گیاهان و محوطه‌سازی‌های آنها است. تخمین زده می‌شود که بیش از ۲۰٪ از کل زمین‌های زراعی دنیا شامل زمین‌های با سطح بارشی متفاوت می‌باشد که به‌طوری‌چنین باعث تأییر شوری روی گیاهان زراعی می‌شود و تأییر این تنش در مناطق خشک و نیمه‌خشک شدیدتر است. [۱] بیشتر زمین‌های شوری در آسیا پس از روسیه، چین، پاکستان متعلق به ایران است. [۲] بیشتر یکی از مهم‌ترین مواد کشاورزی در نواحی خشک و نیمه‌خشک است. ۹۵ میلیون هکتار زمین در دنیا به‌طور متفاوت تحت تأثیر شوری هستند. از این ۴۵ میلیون هکتار زمین در کشت فاریاب، ۲۳ میلیون هکتار مربوط به اراضی دیم می‌باشد. مقدار خسارت ناشی از شوری زمین‌های کشاورزی در سطح جهان ۱۵ میلیارد دلار گزارش شده است. [۳] کاهش زیرساخت‌های تولیدی، کم شدن کارایی فتوسنتز و تغییر در میزان تورجنسیت یکی از نتایج اصلی شوری در گیاهان است. [۴]

رشد گیاهان در شرایط شوری ممکن است از راه امکانی بر اثر پایین‌رفتن پتانسیل آب در محیط رشد بریزد. با دلیل تأثیرات ویژه برون در فرعونی‌های متابولیسمی کاهش یابد. [۵] یکی از بازار‌ترین اثرات کاهش رشد کاهش سطح برق است. [۶] البته فتوسنتز به طور مستقیم نیز تحت تأثیر شوری قرار می‌گیرد ولی اثرات شوری روی فتوسنتز بین گونه‌های مختلف گیاهی متفاوت است. به طوری که نشان دهیاری فتوسنتز را در گندم کاهش می‌دهد. [۷] در حالی که در برخی موجب افزایش فتوسنتز می‌شود. [۸] در مطالعاتی که در سال ۱۹۹۴ گزارش گردیده است که فیزیولوژیک گیاه پیچ به شوری‌های مختلف خاک ناشی داند که دقیقاً پاسخ فیزیولوژیکی گیاهی پیچ به شوری‌های مختلف کاهش بسیاری داشته. کاهش درصد جوانه‌زی و b کلروفیل در تنش شوری به اثر امکانی [۹] و با علت وسیع‌تر بوده است. ارتباط داده شده است. در آزمایش‌پذیری‌های مختلف نشان داده شد که نسبت به مرحله گلدهی تنش به راه‌رویی و اواپ نمایش زایشی کمتر در حالت برای دهان همچنین شوری تأثیر مثبت و معنی‌داری به عمل می‌کرده، ارتفاع بونه طول سبزه، سطح برق و ماده خشک کننده دارد. [۱۰] شوری عاملی به ترتیب بونه طول سبزه، سطح برق و ماده خشک کننده. نهایتاً را از طریق کاهش در تعداد دانه و وزن هزار دانه، تحت تأثیر قرار داده و باعث کاهش آن می‌شود. [۱۱] در مطالعاتی که در سال ۱۹۹۴ گزارش گردیده است که نور زنین و معنی‌دار شوری بر طول سبزه، تعداد سبزه‌های جدید و تعداد دانه در سبزه‌های را گزارش کرده‌اند. [۱۲]}

1 turgidity
مواد و روش‌ها

ابن آزمایش به صورت سامانه آب‌کشی1 در قالب طرح کاملاً تصادفی به صورت آزمایش فاکتوریل با چهار تکرار انجام گردید. تیمارها شامل شوری سدیم 0.02 میلی‌مولار به ترتیب با علایم S3، S2، S1 و S0 در میت شکل پرلیت به خصوصیات مندرج در جدول ۱ و تیمار دوم M2، ۲۲۰ مولولار M1 و محلول NPK2 و مخزون گلدان‌های محیط پرلیت به حجم ۴ لیتر انتخاب شد و در هر گلدان نیچه بذر گندم کشت شد. بار اول تغییر مواد غذایی از فرمول غذایی (جدول ۱) به همراه آب آب آبی‌ای استفاده شد. بعد از مرحله روان کلروفیل برگ‌ها با کلروفیل سنج ۴ انتداگرافی شد و سپس برگ‌های کلروفیل آنها انتداگرافی شده بود. در این باره ۷۰ درجه سلسیوس به مدت ۴ ساعت خشک شدند. سپس تعمیرنده پودر شبدند و با روش کلیفایت میزان نیتروژن برگ انتداگرافی شدند. برای انتداگرافی فسفر از روی بیکرینات سدیم و برای سدیم،

1 Hydroponic system
2 Nitrogen Phosphor Potassium
3 SPAD – ۵۰۲ (Minolta Co., Japan)
جدول ۱) ویژگی‌های فیزیوکیمیایی پرلیت به عنوان بستر کشت

<table>
<thead>
<tr>
<th>K (mg kg⁻¹)</th>
<th>P (mg kg⁻¹)</th>
<th>N (%)</th>
<th>Porosity (cm³/cm³)</th>
<th>bₗ (g/cm³)</th>
<th>CEC (cmol+/kg)</th>
<th>OM</th>
<th>EC (µS cm⁻¹)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>5</td>
<td>0.03</td>
<td>0.88</td>
<td>0.15</td>
<td>26.95</td>
<td>0.47</td>
<td>588</td>
<td>6.66</td>
</tr>
</tbody>
</table>

Bd (bulk density), OM (organic matter), CEC (Cation Exchange Capacity)
ns, ** non-significant and significant at 1% level of probability, respectively.

نتایج و بحث
سطح اول شوری (شاهرخ) در ترکیب با سطح دوم کود NPK جاده بالاترین میزان درصد نیترژن و سطح سوم شوری (۶ میلی‌مولار) در ترکیب NPK با محلول کم‌ترین میزان درصد نیترژن را نشان داد (جدول ۲).

محتوای کارولفیل
افراشان غلت شسته سطح شوری باعث افزایش شاخص کارولفیل برگ تا دامنه مشخصی شد و به پس از آن شاخص کارولفیل کاهش یافت. سطح سوم شوری ۴۰ میلی‌مولار در ترکیب با NPK محلول، جاده و اوره و سطح چهارم شوری در NPK محلول به ترتیب بیشترین و کم‌ترین شاخص کارولفیل را به خود اختصاص دادند. سطح سوم شوری هم‌اواق اوره محتوای کارولفیل برگ را به طور معنی‌داری تحت تأثیر قرار داده و موجب افزایش ان گردید (جدول ۳). کاپیرار (۲۰۰۶) دریافت که با افزایش شوری تا ۲۰۰ میلی‌مول غلت شده کم‌ترین در بر گ کاهش می‌یابد. با توجه به اینکه منیزیم یک عنصر ضروری برای ساختن کارولفیل است این موضوع می‌تواند کاهش کارولفیل را توجیه کند. افزایش نیترژن تنش شوری موجب افزایش عدد کارولفیل متر می‌گردد. [۱۴] امین و همکاران (۱۹۹۴) اظهار داشتند

1 Flame photometry (PFP7- Jenway, Co., England)
Table 3) The nutrient elements concentrations affected by different treatments in wheat leaves

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ca (mg/plant)</th>
<th>Na (mg/plant)</th>
<th>P (mg/plant)</th>
<th>K (mg/plant)</th>
<th>N (%)</th>
<th>chlorophyll</th>
</tr>
</thead>
<tbody>
<tr>
<td>S<sub>0</sub>M<sub>1</sub></td>
<td>1006.5<sup>a</sup></td>
<td>200.3<sup>a</sup></td>
<td>416.7<sup>a</sup></td>
<td>1960<sup>a</sup></td>
<td>3.6<sup>a</sup></td>
<td>52<sup>a</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>2</sub></td>
<td>1020.1<sup>b</sup></td>
<td>213.3<sup>b</sup></td>
<td>422.4<sup>b</sup></td>
<td>2076<sup>b</sup></td>
<td>3.7<sup>b</sup></td>
<td>51<sup>b</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>3</sub></td>
<td>1143.3<sup>b</sup></td>
<td>215.1<sup>b</sup></td>
<td>878.4<sup>b</sup></td>
<td>2136<sup>b</sup></td>
<td>3.5<sup>b</sup></td>
<td>54<sup>b</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>4</sub></td>
<td>1143.9<sup>b</sup></td>
<td>1141.9<sup>d</sup></td>
<td>396.2<sup>d</sup></td>
<td>1974<sup>d</sup></td>
<td>3.5<sup>d</sup></td>
<td>52<sup>d</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>5</sub></td>
<td>1245.8<sup>b</sup></td>
<td>1284.3<sup>d</sup></td>
<td>456.1<sup>d</sup></td>
<td>2258<sup>d</sup></td>
<td>3.4<sup>d</sup></td>
<td>54<sup>d</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>6</sub></td>
<td>1439.8<sup>b</sup></td>
<td>1578.3<sup>d</sup></td>
<td>846.9<sup>d</sup></td>
<td>2348<sup>d</sup></td>
<td>3.8<sup>d</sup></td>
<td>56<sup>d</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>7</sub></td>
<td>1474.5<sup>b</sup></td>
<td>1428.1<sup>c</sup></td>
<td>354.3<sup>d</sup></td>
<td>1756<sup>d</sup></td>
<td>3.5<sup>d</sup></td>
<td>68<sup>d</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>8</sub></td>
<td>1154.2<sup>b</sup></td>
<td>1536.6<sup>d</sup></td>
<td>429.6<sup>d</sup></td>
<td>1962<sup>d</sup></td>
<td>3.2<sup>d</sup></td>
<td>63<sup>d</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>9</sub></td>
<td>1295.5<sup>b</sup></td>
<td>1772.4<sup>d</sup></td>
<td>538.4<sup>d</sup></td>
<td>1940<sup>d</sup></td>
<td>3.4<sup>d</sup></td>
<td>65<sup>d</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>10</sub></td>
<td>1192.8<sup>b</sup></td>
<td>1836.1<sup>d</sup></td>
<td>290.1<sup>d</sup></td>
<td>1647<sup>d</sup></td>
<td>3.2<sup>d</sup></td>
<td>49<sup>d</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>11</sub></td>
<td>1008.3<sup>b</sup></td>
<td>1987.6<sup>d</sup></td>
<td>365.6<sup>d</sup></td>
<td>1782<sup>d</sup></td>
<td>3.1<sup>d</sup></td>
<td>46<sup>d</sup></td>
</tr>
<tr>
<td>S<sub>0</sub>M<sub>12</sub></td>
<td>1295.7<sup>b</sup></td>
<td>2125.6<sup>d</sup></td>
<td>324.3<sup>d</sup></td>
<td>1986<sup>d</sup></td>
<td>3.0<sup>d</sup></td>
<td>45<sup>d</sup></td>
</tr>
</tbody>
</table>

S₀= 0 mM salinity, S₁= 20 mM salinity, S₂= 40 mM salinity, S₃= 60 mM salinity, M₁=urea,M₂= NPK solid,M₃= NPK liquid
روند معکوسی را نشان می‌دهد. با توجه تحقیقات با بهره‌داری و همکاران (2010) نشان داده که استفاده از کود و نسبت‌های مختلف حاوی نیترژن در سطوح شوری مختلف روی فنوتی، میزان کارکرده و همچنین میزان تنشیپ و سدیم برم اثر می‌داری داشت. (6) لاهو و همکاران (1998) نشان دادند که کارکرده لیزر یک ابزار سودمند و قابل استفاده و غیر تخریبی برای تخمین نیترژن مورد نیاز برخی است. با افزایش سطح‌نوتروژن برش کاهش یافته. (18) پسرکی (1993) اظهار داشت که افزایش شوری نیترژن بهترین سبب را کاهش می‌دهد. (20) کریم و مونس (1980) دریافت که شوری موجب کاهش نیترژن برگ کلزا شد و این امر می‌تواند به دلیل رابطه آناتومیستی بین تنشیپ و کثر در شرایط نشش شوری باشد. (19) پسرکی (1994) گزارش کرد که نشش شوری فعالیت‌های بخش بیرگی از نیترژن برگ در کلبلپلاستی به‌طور میانی شکسته به‌طور کلی سلول‌های در شیت دارد و این آزمون به عنوان یک آزمون کلیدی ابزار باید یک کسبی کریم است. (5) در این آزمایش سطح چهار تیمار شوری (60 میلی‌مولار) با میانگین 6115/6 درایی بیشترین و سطح اول تیمار شوری با میانگین 3113/2 میلی‌گرم در ماهه خشک دارای کمترین میزان سدیم بودند. تک‌گزاری سطح مناسبی از پنتاسیم برای ادامه جابه‌گیان در شرایط شوری ضروری است.

پنتاسیم برگ

با توجه رفتار سطح شوری از مشاهده به 60 میلی‌مولار به صورت منعی داری از میزان پنتاسیم در بخش اندام‌های گندم کاسته شد. در جدول (3) مشاهده می‌شود که بیشترین میزان پنتاسیم اندام‌های شوری در سطح دوم تیمار شوری همراه با NPK محلول با میانگین 3137/2 و کمترین میزان پنتاسیم در سطح 60 میلی‌مولار تیمار شوری همراه با اثر دارد. نتایج این آزمون با استحکام و به‌طور کلی سطح سلول‌های ریشه دارد. با توجه رفتار میزان سدیم و یا نسبت سدیم به کلسیم در محیط رشد از جذب پنتاسیم کاسته می‌شود. (18) پسرکی (2005) گزارش کرد که با افزایش شوری از میزان پنتاسیم در ساعت‌ها و دانه گندم کاسته می‌شود اما در طی استفاده از کود نیترژن از مقدار این کاهش کاسته شده و نیترژن عملاً سبب افزایش مقدار پنتاسیم در هر دو بخش هوایی و ریشه گندم خواهد شد. (19) درودی و سبادت (1999) نشان دادند

که به دلیل همبستگی قوی بین
غلظت کلر و پنتاسیم در برگ برم
گندم و همبستگی ضعیف بین کلر و
سایر کاتیون‌ها در شرایط شوری
احتمالاً مقداری از پنتاسیم جذب
شده توسط گیاه برای خسته کردن
پارک‌های کلر ذخیره شده در
واکنش‌های جایی نمی‌پذیرد. در
نتیجه علی رغم یک بودن غلظت
پنتاسیم در اندام‌های گندم، علائم
کمبود پنتاسیم در کنار ظاهر می‌گردد
(11) در حفظت پنتاسیم از طریق
افراش غلظت پرولین و در نتیجه
به وسیله تغذیه اساسی تحمیل گیاه
به نش شوری را افزایش می‌دهد. (12)
بیش از 50 آزم در سلول‌های فعال می‌شود که نقش
این عامل گیاهی‌زایی با سدیم
نخواهد بود. زنگ و همکاران
(2004) گزارش نمودند است که
نسبت مطلوب پنتاسیم به سدیم به
منظور تنظیم انسوزی، نگهداری فشار
تورپیسنس، عملکرد روزنها،
فعالیت آنزیم‌ها، سنتر پروتوپی‌ها،
متا‌باولیسم اسیدان و فتو‌سنتز مهم
و ضروری است. همچنین تولید زیاد
گونه‌ای فعال استرایک‌ن که در اثر
نش شوری ایجاد می‌شود، معمولاً
منجر به پراکسیداسیون چربی‌ها و

فصل‌نامه بوم‌شناسی گیاهان زراعی، جلد ۱۱، شماره ۲، صفحات ۳۰–۳۱ (تابستان ۱۳۹۴)
مقدار نیتروژن در ادامه‌های هوای
در محیط‌های شور می‌توانند ناشی از ممیزت یون کلر از جذب نیتروژن باشد در محوطه بایلی شوری از منابع پتانسیم ادامه‌های هوای کما یک یاد. نشته پتانسیم از سلول‌ها به وسیله فعال کرادن اکنال‌های انتشار پتانسیم می‌گردد.[10] بی‌کیوه و همکاران (2010) با انجام تحقیق روز کلا تیه گیر کردند که تخم‌بندی به شوری از افزایش پتانسیم به سبب نیتروژن یا گله‌های پتانسیم که به دنبال کاربرد نیتروژن در محوطه رشد گیاه حاصل می‌گردد افزایش می‌یابد.[11]

میزان فسفر برگ

از لحاظ گله‌های فسفر، بیشترین مقدار مربوط به سطح شوری صفر همراه با کود اوره و کمترین گله‌های فسفر نیز مربوط به سطح شوری 6 میلی‌مولار همراه با کود اوره بود. در محیط شور به واسطه افزایش قدرت یونی از فعالیت فسفر در محلول خاک کاسته می‌شد.[10] و نیز در گله‌های الکترولیت بالا و شوری زیاد نسبت به شوری کم، جذب سطحی فسفر در خاک بیشتر شده و با تغییر فسفر کمتری در محلول خاک فضا است. مهم‌ترین اثر شوری افزایش گله‌های سدیم در بافت‌های گیاه است. سدیم اضافی می‌تواند منجر به تغییرات در وضعیت تغذیه‌ای عناصر دیگر شور ادامه‌هایی را در محیط‌های شور می‌توانند ناشی از ممیزت یون کلر از جذب نیتروژن به دلیل رابطه آنتاگونیستی بین یون کلر با یون نیتروژن دیگری در محیط‌های شوری دانست و در گله‌های بالایی شوری از منابع منیزیم کاسته شد. جون منیزیم یک عنصر ضروری برای ساختن کلروفیل است می‌توانند کاهش کلروفیل را توجیه کنند.

۳۷
References

Effect of salinity stress induced by NaCl on nutrient elements concentration in wheat leaves

Monireh Hajiaghaei Kamrani
Lecturer of Agriculture and Engineering Department
Payame Noor University
Tehran, Iran
Email ✉️: kamranimona@yahoo.com

Azam Rahimi Chegeni *
Young Researchers and Elite Club
Islamic Azad University
Khorramabad, Iran
Khorramabad Branch
Email ✉️: rahimiazam20@yahoo.com (corresponding author)

Hadi Hosseinniya
Young Researchers and Elite Club
Islamic Azad University
Ghaemshahr Branch
Ghaemshahr, Iran
Email ✉️: maghaleh110@yahoo.com

Ali Babaei
Ghaghelestani
Master in Weed Sciences
Mohaghegh ardbali University
Ardabil, Iran
Email ✉️: ababae63@gmail.com

Received: 23 April 2015 Accepted: 21 August 2015

ABSTRACT To soil and water salinity are the main problems for agricultural crop production especially in arid and semi-arid regions. This study was conducted in a completely randomized design and factorial experiment with four replications to investigate the effects of different levels of salinity on nutrient element concentrations in wheat. Treatments consisted of four levels of NaCl salinity, 0, 20, 40, 60 milimolar in perlite bed and second treatment were including Urea, solid NPK and dissolved NPK. Results showed that the effect of different levels of salinity on chlorophyll content and leaf nitrogen percent were significant. Salinity to a certain extent caused the increase of chlorophyll, but then led to the decrease of chlorophyll due to the adverse effect of salinity on chlorophyll and degradation of chloroplasts. Also, the salinity led to the reduction of leaf nitrogen. Reduction of nitrogen content in shoots in salty environments can be due to the inhibitory effect of chloride on nitrate uptake. The highest and lowest concentrations of P respectively were achieved from 0 salinity level with urea and 60 mM salinity level with urea that probably was due to high levels of Na and competition of Cl with P to uptake by the plant. The main effect of salinity is increasing of sodium concentration in plant tissue. Reduced uptake of potassium and reduction of plant growth are the results of sodium increment. Maximum concentration of Ca was reported from 40 mM salinity treatments with urea and minimum amount from 60 mM salinity treatments with solid NPK fertilizer. According to result, in terms of salinity stress, using of dissolved NPK fertilizers in perlit bed had a better performance in the concentration of nutrient elements in wheat leaves.

Keywords:
- chlorophyll content
- hydroponic
- macro-elements
- potassium
- salinity