تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,366 |
تعداد دریافت فایل اصل مقاله | 54,843,979 |
Wheat yield prediction modeling by soil properties: a case study in North-west of Iran | ||
International Journal Of Agricultural Science, Research And Technology In Extension And Education Systems | ||
مقاله 4، دوره 2، شماره 1، خرداد 2012، صفحه 23-26 اصل مقاله (212.85 K) | ||
نویسندگان | ||
Afshin Morovvat* 1؛ Mostafa Emadi2؛ Mosa Shojae3؛ Ahmad Pakpour4؛ Leila Gholami1؛ Javad Haji Aghasi5؛ Ehsan Kamali5 | ||
1Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran | ||
2Department of Soil Science, Sari University of Agricultural Sciences and Natural Resources, Iran | ||
3Department of Soil Science, College of Agriculture, Tarbiat Modares University, Tehran, Iran | ||
4Department of Soil Science, College of Agriculture, Tabriz University, Tabriz, Iran | ||
5Desert Regions Management Department, College of agriculture, Shiraz University, Shiraz, Iran | ||
چکیده | ||
Crop yields are dependent on a number of factors such as soil type, weather conditions and farming practices. Crop yield estimates in different soil types are required to meet the needs of farmers, land appraisers, and governmental agencies in Iran as around the world. This study was conducted to model the wheat-grain yields [Triticum aestivum L.] by soil properties in Khoy area, the north-west of Iran. The wheat yields (mean of 5 years) were applied to predict and model the wheat yields under an average level of management used through the area. The prerequisite data on main soil physicochemical characteristics was collected and measured to clarify the correlation and multiple regression analysis which are used to establish the relationships between the soil properties and the wheat-grain yields. Based on the calculated soil index, the general equation (GE) taking the soil index ranging from 0 to 100 % into account was proposed to predict the wheat-grain yields applicably. The results herein markedly proposed other two regression equations for the areas having soil index higher and lower than 70 %, respectively. The results indicated that within three obtained regression models, the equation suggested for the area having soil index higher than 70 % is appreciably more accurate than the model outlined by the FAO and potentially could be recommended for predicting the wheat yield in study area. Moreover, the GE regression model and the proposed model for the area having the soil index lower than 70 % showed the same accuracy compared with the FAO model but calibrated based on the study area condition. Therefore, our proposed regression models for the wheat-grain yields prediction could be used instead of performing the FAO models across the country with approximately same soil and climate status. [Morovvat et al. Wheat yield prediction modeling by soil properties: a case study in North-west of Iran. International Journal of Agricultural Science, Research and Technology, 2012; 2(1):23-26]. | ||
کلیدواژهها | ||
modelling؛ Soil index؛ Wheat yields | ||
مراجع | ||
1. Cochran, W. G and Cox, C. M. (1962). Experimental designs. John Wiley & Sons, Inc., New York, N.Y. pp. 561-565.
2. FAO. (1995). Our land, our future – A new approach to land use planning and magement. FAO, Rome. 48 p.
3. Kiniry, L. N., Scrivner, C. L. and Keener, M. E. (1983). A soil productivity index based upon predicted water depletion and root growth. Res. Bull. 1051. Univ. of Missouri, Columbia.
4. Lindstrom, M. J., Schumacher, T. E., Jones, A., Gantzer, C. J. (1992). Productivity index model comparison for selected north central region soils. Journal of Soil Water Conservation. 47: 491-494.
5. Olson, K. R., and Olson, G. W. (1985). A soil-climate index to predict corn yield. Agricultural Systems, 18: 227–237.
6. Pierce, F. J. (1983). Productivity of soils: Assessing long-term changes due to erosion. Journal of Soil Water Conservation. 39: 39–44.
7. Rossiter, D. G. (1994). Lecture notes: Land evaluation. Cornell University, College of Agriculture and Life Sciences, Department of Soil, Crop and Atmospheric Sciences.
8. Rossiter, D. G. (1996). A theoretical framework for land evaluation. Geoderma. 72: 165-190.
9. Ruiee, R., Werahai, N and Aree, S. (2004). Land Evaluation for an agriculture land reform area using GIS, Ministry of Agriculture and cooperatives. Bankok, Thailand.
10. Sopher, C. D and McCracken, R. J. (1973). Relationships between soil properties, management practices and corn yield on south Atlantic covered plains soils. Agronomy Journal, 65: 595-600.
11. Sys, C., Van Ranst, E., Debaveye, J. (1991a). Land Evaluation Part I: Principles in land evaluation and crop production calculations. Agric. Publ. GADC, Brussels, Belgium 7:274.
12. Sys, C., Van Ranst, E., Debaveye, J. (1991b). Land Evaluation Part II: Methods in land evaluation. Agric. Publ. GADC, Brussels, Belgium 7: 248.
| ||
آمار تعداد مشاهده مقاله: 1,051 تعداد دریافت فایل اصل مقاله: 362 |