Application of Water for Synthesis of Cyclopentadienes via Multi-component Reactions of N-methyl imidazole

Alireza Ahmadi Agh Mashhadi, Zinatossadat Hossaini*
Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
(Received 14 Jun. 2015; Final version received 20 Nov. 2015)

Abstract
A water-accelerated multi-component synthesis of organic target molecules was used as a key method for the preparation of cyclopentadiene derivatives. The three-component condensation reactions of primary amines with alkyl propiolates in the presence of N-methylimidazole in water at room temperature were developed as efficient and clean green synthetic procedures for the high-yielding preparation of 4-oxo-2,5-cyclopentadiene-1,2-dicarboxylate derivatives.

Key words: Primary amines, N-methylimidazole, Alkyl propiolates, Multi-component reaction, Water.

Introduction
At the beginning of the 21st century, a move of importance in chemistry is obvious with the longing to extend environmentally gentle routes to a numerous of materials [1]. Green chemistry approaches hold out momentous potential not only for reduction of byproducts, a reduction in the waste produced, and lowering of energy costs but also in the development of new methodologies toward previously unobtainable materials, using existing technologies [2]. Of all of the existing areas of chemistry, medicinal and pharmaceutical chemistry, with their traditionally large volume of waste/product ratio, are maybe the most developed for greening [3]. Since the discovery of ferrocene in which a cyclopentadiene ring is bonded to a transition metal, [4] the cyclopentadiene ring and/or cyclopentadienyl system have enjoyed considerable research interest for more than half a century in organic chemistry and the other research fields [4-11]. Herein, we report an efficient three component reaction between N-methylimidazole 1, alkyl propiolate 2, 3 and primary amines 4 in water at 80 °C which lead to cyclopentadiene derivatives 5 in good yield (Scheme 1).

*Corresponding author: Zinatossadat Hossaini, Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. E-mail: zshossaini@yahoo.com.
Experimental

All chemicals used in this work were purchased from Fluka (Buchs, Switzerland) and were used without further purification. Melting points were measured on an Electrothermal 9100 apparatus. Elemental analyses for C, H, and N were performed using a Heraeus CHN–O-Rapid analyzer. Mass spectra were recorded on a FINNIGAN-MAT 8430 spectrometer operating at an ionization potential of 70 eV.

IR spectra were measured on a Shimadzu IR-460 spectrometer. 1H and 13C NMR spectra were measured with a BRUKER DRX-500 AVANCE spectrometer at 500.1 and 125.8 MHz, respectively. 1H and 13C, spectra were obtained for solutions in CDCl$_3$ using TMS as internal standard or 85% H$_3$PO$_4$ as external standard.

General procedure for preparation of compounds 5a-g

To a magnetically stirred mixture of alkyl propiolate 3 (2 mmol) and N-methylimidazole 1 (2 mmol) in water (5 mL) was added mixture of alkyl propiolate 2 and primary amine 4 (2 mmol) at r.t. after 30 min. The reaction mixture was then stirred for 2h. After completion of the reaction [TLC (AcOEt/hexane 1:4) monitoring], solid residue was filtered and washed with cold Et$_2$O to afforded pure compounds 5.

Dimethyl 3-(benzylamino)-5-methoxy-4-oxo-2,5-cyclopentadiene-1,2-dicarboxylate (5a)

Yellow oil, yield: 0.59g (90%), IR (KBr) (ν_{max}/cm$^{-1}$): 1764, 1695, 1547, 1435, 1352, 1247 cm$^{-1}$. 1H NMR (500.1 Hz, CDCl$_3$): δ = 3.75 (3 H, s, MeO), 3.86 (3 H, s, MeO), 3.92 (3 H, s, MeO), 5.23 (2 H, s, NCH$_2$), 6.17 (1 H, broad, NH), 7.32 (1 H, t, 3J = 7.3 Hz, CH), 7.38 (2 H, t, 3J = 7.6 Hz, 2 CH), 7.46 (2 H, d, 3J = 7.3 Hz, 2 CH) ppm. 13C NMR (125.7 Hz, CDCl$_3$): δ = 48.6 (NCH$_2$), 52.3 (MeO), 53.4 (MeO), 59.6...
(MeO), 113.4 (C), 121.7 (C), 128.2 (2 CH), 129.4 (2 CH), 135.3 (C), 138.2 (CH), 148.4 (C), 150.2 (C), 162.4 (C=O), 163.2 (C=O), 187.4 (C=O) ppm. MS: m/z (%) = 331 [M+H]+, 300 (86), 91 (100), 77 (56), 31 (100). Anal. Calc. for C_{17}H_{17}NO_{6} (331.32): C, 61.63; H, 5.17; N, 4.23. found: C, 61.72; H, 5.24; N, 4.35%.

Ethy 3-(ethylamino)-5-methoxy-4-oxo-2,5-cyclopentadiene-1,2-dicarboxylate (5b)

Pale yellow oil, yield: 0.54g (95%), IR (KBr) (ν_{max}/cm^{-1}): 1756, 1735, 1687, 1656, 1524, 1482, 1363 cm^{-1}. \^{1}H NMR (500.1 Hz, CDCl_{3}): \text{σ} = 1.15 (3 H, t, J = 7.3 Hz, Me), 1.35 (3 H, t, J = 7.3 Hz, NCH2), 3.74 (3 H, s, MeO), 3.83 (3 H, s, MeO), 4.26 (2 H, q, J = 7.5 Hz, CH_{2}O), 4.67 (1 H, broad, NH) ppm. \^{13}C NMR (125.7 Hz, CDCl_{3}): δ = 13.7 (Me), 14.3 (Me), 39.2 (NCH_{2}), 51.7 (MeO), 58.5 (MeO), 62.0 (CH_{2}O), 113.7 (C), 132.4 (C), 147.2 (C), 150.6 (C), 162.8 (C=O), 163.7 (C=O), 186.4 (C=O) ppm. Anal. Calc. for C_{19}H_{21}NO_{6} (359.38): C, 63.50; H, 5.89; N, 3.98. found: C, 63.62; H, 5.93; N, 3.98%.

Methyl-5-ethoxy-3-(methylamino)-4-oxo-2,5-cyclopentadiene-1,2-dicarboxylate (5d)

Yellow oil, yield: 0.51g (90 %). IR (KBr) (ν_{max}/cm^{-1}): 1752, 1740, 1694, 1487, 1365 cm^{-1}. \^{1}H NMR (500.1 Hz, CDCl_{3}): \text{σ} = 1.28 (3 H, t, J = 7.5 Hz, Me), 1.35 (3 H, t, J = 7.5 Hz, Me), 3.45 (NMe), 3.78 (3 H, s, MeO), 4.25 (2 H, q, J = 7.5 Hz, CH_{2}O), 4.74 (1 H, broad, NH) ppm. \^{13}C NMR (125.7 Hz, CDCl_{3}): δ = 13.6 (Me), 14.8 (Me), 32.6 (NCH_{2}), 52.4 (MeO), 65.4 (CH_{2}O), 68.4 (CH_{2}O), 115.2 (C), 125.2 (C), 138.5 (C), 149.6 (C), 163.5 (C=O), 164.7 (C=O), 185.6 (C=O) ppm. Anal. Calc. for C_{19}H_{21}NO_{6} (359.38): C, 55.12; H, 6.05; N, 4.94. found: C, 55.23; H, 6.15; N, 5.08%.

Ethyl-5-methoxy-3-(4-methylbenzylamino)-4-oxo-2,5-cyclopentadiene-1,2-dicarboxylate (5c)

Yellow oil, yield: 0.68g (95%), IR (KBr) (ν_{max}/cm^{-1}): 1764, 1735, 1670, 1445, 1340 cm^{-1}. \^{1}H NMR (500.1 Hz, CDCl_{3}): \text{σ} = 1.27 (3 H, t, J = 7.4 Hz, Me), 2.32 (3 H, s, Me), 3.76 (3 H, s, MeO), 3.87 (3 H, s, MeO), 4.24 (2 H, q, J = 7.4 Hz, CH_{2}), 5.18 (2 H, s, NCH_{2}), 6.12 (1 H, broad, NH), 7.32 (2 H, d, J = 7.8 Hz, 2 CH), 7.40 (2 H, d, J = 7.8 Hz, 2 CH) ppm. \^{13}C NMR (125.7 Hz, CDCl_{3}): δ = 13.7 (Me), 21.4 (Me), 47.8 (NCH_{2}), 52.3 (MeO), 59.7 (MeO), 62.5 (CH_{2}O), 113.6 (C), 124.5 (C), 128.6 (2 CH), 130.4 (2 CH), 131.4 (C), 135.7 (C), 138.5 (C), 151.2 (C), 164.2 (C=O), 186.4 (C=O) ppm. Anal. Calc. for C_{19}H_{21}NO_{6} (359.38): C, 63.50; H, 5.89; N, 3.98. found: C, 63.62; H, 5.93; N, 3.98%.
Results and discussion
The structures of compounds 5 were assigned by IR, 1H NMR, 13C NMR and mass spectral data. For example, the 1H NMR spectrum of 5a exhibited four singlets for methoxy and NCH$_2$ group at 3.75 (3 H, s, MeO), 3.86 (3 H, s, MeO), 3.92 (3 H, s, MeO), 5.23 (2 H, s, NCH$_2$) and one broad singlet for NH proton at (δ 6.17 ppm). The 13C NMR spectrum of 5a exhibited 17 distinct resonances which further confirmed the proposed structure. The IR spectrum of 5a displayed characteristic C=O bands. The mass spectra of 5a displayed the molecular ion peak at the appropriate m/z. Although the mechanistic details of the reaction are not known, a plausible rationalization may be advanced to explain the product formation. Presumably, the zwitterionic intermediate 6, generated from N-methylimidazole and alkyl propiolate 3, is trapped by the enaminoester 7, generated in situ from the corresponding amine 4 and alkyl propiolate 3 to produce intermediates 8 and 9 (Scheme 2). Nucleophilic attack of the conjugate base 8 on intermediate 9 leads to an adduct 10, which undergoes intramolecular Wittig reaction to afford imino-cyclopentene derivative 11. Intermediate 11 undergoes a [1, 5] H-shift to generate 5 (Scheme 2).

Conclusion
In summary, we report a reaction involving acetylenic compounds and primary amines in the presence of N-methylimidazole at room temperature in water as the solvent which affords a new route to the synthesis of functionalized cyclopentadienes. The present procedure has the advantage that, not
only is the reaction performed under neutral conditions, but also the reactants can be mixed without any prior activation or modification.

References