مطالعات آزمایشگاهی تغییرات نفوذپذیری هسته رست
سد خاکی - سنگ‌ریزه‌ای ارومیه تحت اثر تنش‌های موثر
وارده توسط دستگاه نفوذپذیری سه‌محوری
با دیواره انعطاف‌پذیر (Tri Flex2)

سیامک زادکریم
کارشناس ارشد مهندسی عمران، مکانیک خاک و پی
عضو هیئت علمی دانشگاه آزاد اسلامی واحد بناب
s_zadkarim@yahoo.com

کاظم بدو
دانشیار گروه عمران دانشگاه ارومیه، کد پستی
155
k.badv@mail.urmia.ac.ir

چکیده:
سد‌خاکی - سنگ‌ریزه‌ای شهروی ارومیه بر روی رودخانه شهروی در 15 کیلومتری غرب شهرستان
ارومیه به‌هسته‌ای بسیار سری در حال ساخت است. در این مطالعه با استفاده از یک سری آزمایشات
آزمایشگاهی، نفوذپذیری مصالح هسته‌ای مرکزی سد توسط دستگاه نفوذپذیری سه‌محوری با دیواره
انعطاف‌پذیر پذیرفته شد و بر پایه نتایج بدست آمده، برای پرداختن به سه‌محوری، سه‌محوری بطور همزمان در
داخل محیط دستگاه قرار گرفته و تحت تنش تغییرات مشخص و گرادیان هیدرولیکی 10 مورد آزمایش قرار
گرفته و برای هر سری ازمایش با سه نمونه ثابت، نشانه‌های موثر از 0.5 تا 0.2 کیلوپاسکال با پیرو تغییرات
50 کیلوپاسکال، منعی نبودند. دانشیاری‌های حاصل از تغییرات نش تغییر - نفوذپذیری برای هر نمونه
آزمایش نشان دادند که با افزایش تنش موثر از 0.5 به 2.5 کیلوپاسکال، نفوذپذیری نمونه‌ها به ترتیب از
نشت تغییرات بر روی نفوذپذیری در تنش‌های بالای 0.5 کیلوپاسکال بود.

واژه‌های کلیدی:
سد شهروی، ضرب نفوذپذیری، هسته مرکزی، آزمایش سه‌محوری
فصلنامه علمی - تخصصی عمران

مقدمه

تا کنون مطالعات زیادی در زمینه بررسی نفوذپذیری در خاک‌های اشباع در حال تکمیل م₽محمدی به مرور زمان افزایش یافته و اهمیت موضوع و مدل کردن شرایط طبیعی خاک محل در آزمایشگاه، و نیز در مقایسه سه محوری از اهمیت خاصی برخوردار است. (Daniel 1989) انشاع آزمایشات سه‌محوری به این ترتیب اعمال تنش محیط محور کنده و گرداگرد هیدروپلاست مورد نظر روی نمونه، جهت صلح به شرایط واقعی نمونه در زیر خاک حائز اهمیت. فراوانی می‌باشد. از جمله مطالعات که در این زمینه انجام گرفته است، می‌توان به بررسی آن اثر شکل و اندازه نام‌گذاری در تحلیل شاخص اشناع و نیز اثر نفوذپذیری اشکاره نمود. (Carpenter and Stephenson, 1989)

در این تحقیق، امر تشکیل مورد بر روی نفوذپذیری در نمونه‌های خاک رس شنی و همچنین اثر نحوه اخلاق و مصالح و نیز اعمال شرایط مختلف در نفوذپذیری تربیت‌لاستیک پرده‌ای باید انجام شود. توسط دستگاه نفوذپذیری سه محوری با دیواره انعطاف‌پذیر (Tri-Flex2)، مورد بررسی قرار گرفته است.

سد شهروی‌های ارومیه

سد خاکی - سگری‌های شهروی‌های ارومیه برسی روی رودخانه شهروی در فصل‌های 12 کیلومتری جنوب غربی و در بالای سد کام‌کردن ارومیه در حال ساخت است. این روی‌ها منبع اصلی تأمین آب و کشاورزی منطقه می‌باشد. محل در نظر گرفت شده برای احداث سد شهروی‌های دارای مختصات جغرافیایی 45° طول شرقی و 13° عرض شمالی می‌باشد (زمانگشای سه‌شیطاه طرح سد شهروی‌های ارومیه، 1388). ترازانت سد از سطح آزاد درا و طول آن حدود 55 متر می‌باشد. مقعط خاکی به سه شیل سه‌شیطاه سپری شده است. همچنین این سد، هر سه سد در مرکز تقریباً در عرضی (Tri-Flex2) تولیدی از دستگاه نفوذپذیری با دیواره انعطاف‌پذیر (Tri-Flex2)، نمونه‌های برای از ELE و Soil Test شرکت‌های بوده و دارای یک پایه اصلی و یک پایه کمکی به همراه سه محوری آزمایش می‌باشد. همچنین سد دارای دو پرده از نوع پلاستیک در بالا دارد و پایین دارد. در زیر فرازین و تنش‌ابتد. جهت مانع‌کننده اشکاره آب، خصوصاً در هنگام‌های بودن سنگ نهاده سرد، می‌باشد (مشخصات فنی و اختصاصی سد شهروی‌های ارومیه، 1388)

(دوام نکردن)
أعمال تعيين ضريب تقويم يبميز مصالح هسته رش السد تحت نشانات متر متر مختلف

مشتركة في هسته رش السد في دانه باستخدام زجاجة بيرزاترات من سانتي متر لشتاءه في محاولة للكشف في هسته وخارطة خاصه للضغط تحديد معركة بين محطة وكمية وصول ذيل وجبة على

Daniel et al., 1998

كتاب (1) رياضية قصة عن حrstrip رش السد تحت نشانات متر متر مختلف

(من وجهة نظر: جامعة أرمينيا)
Flow vs. Time

- **Soil Type:** GC
- **σ:** 365 (kpa)
- **U:** 1000 (kpa)
- **ω:** 10.68%
- **γ:** 250 (kg/m³)
- **Gs:** 2.70
- **Sr:** (93% h)

Series 1 and **Series 2**

- **(K)**

\[K = \frac{q}{i} \]

ASTM-D5084, 1997

(3) **Soil Type:** GC

Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Type</td>
<td>GC</td>
</tr>
<tr>
<td>σ</td>
<td>365 (kpa)</td>
</tr>
<tr>
<td>U</td>
<td>1000 (kpa)</td>
</tr>
<tr>
<td>ω</td>
<td>10.68%</td>
</tr>
<tr>
<td>γ</td>
<td>250 (kg/m³)</td>
</tr>
<tr>
<td>Gs</td>
<td>2.70</td>
</tr>
<tr>
<td>Sr</td>
<td>(93% h)</td>
</tr>
</tbody>
</table>

Figure:

- Flow vs. Time

Series 1 and **Series 2**

- **K:**

\[K = \frac{q}{i} \]

ASTM-D5084, 1997

(3) **Soil Type:** GC

Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Type</td>
<td>GC</td>
</tr>
<tr>
<td>σ</td>
<td>365 (kpa)</td>
</tr>
<tr>
<td>U</td>
<td>1000 (kpa)</td>
</tr>
<tr>
<td>ω</td>
<td>10.68%</td>
</tr>
<tr>
<td>γ</td>
<td>250 (kg/m³)</td>
</tr>
<tr>
<td>Gs</td>
<td>2.70</td>
</tr>
<tr>
<td>Sr</td>
<td>(93% h)</td>
</tr>
</tbody>
</table>

Figure:

- Flow vs. Time

Series 1 and **Series 2**

- **K:**

\[K = \frac{q}{i} \]

ASTM-D5084, 1997

(3) **Soil Type:** GC

Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Type</td>
<td>GC</td>
</tr>
<tr>
<td>σ</td>
<td>365 (kpa)</td>
</tr>
<tr>
<td>U</td>
<td>1000 (kpa)</td>
</tr>
<tr>
<td>ω</td>
<td>10.68%</td>
</tr>
<tr>
<td>γ</td>
<td>250 (kg/m³)</td>
</tr>
<tr>
<td>Gs</td>
<td>2.70</td>
</tr>
<tr>
<td>Sr</td>
<td>(93% h)</td>
</tr>
</tbody>
</table>

Figure:

- Flow vs. Time

Series 1 and **Series 2**

- **K:**

\[K = \frac{q}{i} \]
Permeability VS. Effective Stress

\[T = 20^\circ \text{C} \]

\[K_r = k \cdot R_t \]

<table>
<thead>
<tr>
<th>Permeability (cm/s)</th>
<th>Effective Stress (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00E-09</td>
<td>0</td>
</tr>
<tr>
<td>1.00E-08</td>
<td>100</td>
</tr>
<tr>
<td>1.00E-07</td>
<td>200</td>
</tr>
<tr>
<td>1.00E-06</td>
<td>300</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>(cm/s/s)</th>
<th>Fracture Pressure (cm/s)</th>
<th>Fracture Pressure (kPa)</th>
<th>Fracture Pressure (cm/s)</th>
<th>Fracture Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/34 X 10^-4</td>
<td>0/797</td>
<td>1/16 X 10^-4</td>
<td>1/32 X 10^-4</td>
<td>0/1212</td>
</tr>
<tr>
<td>3/34 X 10^-4</td>
<td>0/797</td>
<td>2/64 X 10^-4</td>
<td>2/96 X 10^-4</td>
<td>1/1212</td>
</tr>
<tr>
<td>2/90 X 10^-4</td>
<td>0/797</td>
<td>3/65 X 10^-4</td>
<td>3/96 X 10^-4</td>
<td>1/1212</td>
</tr>
<tr>
<td>1/91 X 10^-4</td>
<td>0/797</td>
<td>1/40 X 10^-4</td>
<td>1/72 X 10^-4</td>
<td>1/1212</td>
</tr>
<tr>
<td>1/37 X 10^-4</td>
<td>0/797</td>
<td>1/59 X 10^-4</td>
<td>1/99 X 10^-4</td>
<td>1/1212</td>
</tr>
<tr>
<td>1/38 X 10^-4</td>
<td>0/797</td>
<td>1/59 X 10^-4</td>
<td>1/99 X 10^-4</td>
<td>1/1212</td>
</tr>
</tbody>
</table>

Legend:

- GC: Good Conductivity
- A: Average Conductivity
جدول 3: نتایج آزمایش‌های تهویه‌برداری سه‌محوری مصالح هسته ریس در ضرایب تنها مدل نهایی (50 تا 250 کیلوسکال)

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>نوع خاک</th>
<th>ارتفاع (cm هیت cm هیت)</th>
<th>لنز موئر (Kpa)</th>
<th>ضریب تهویه‌برداری (cm/s)</th>
<th>ضریب اصلی درجه حرارت (K)</th>
<th>دما (یو)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td>GC</td>
<td>۱۲/۰۹</td>
<td>۱۰۱۲</td>
<td>۱/۰۸۵</td>
<td>۰/۷۹۵</td>
<td>۲/۰۰</td>
</tr>
<tr>
<td>2-</td>
<td>GC</td>
<td>۱۲/۰۹</td>
<td>۱۰۱۲</td>
<td>۱/۰۸۵</td>
<td>۰/۷۹۵</td>
<td>۲/۰۰</td>
</tr>
<tr>
<td>3-</td>
<td>GC</td>
<td>۱۲/۰۹</td>
<td>۱۰۱۲</td>
<td>۱/۰۸۵</td>
<td>۰/۷۹۵</td>
<td>۲/۰۰</td>
</tr>
<tr>
<td>4-</td>
<td>GC</td>
<td>۱۲/۰۹</td>
<td>۱۰۱۲</td>
<td>۱/۰۸۵</td>
<td>۰/۷۹۵</td>
<td>۲/۰۰</td>
</tr>
</tbody>
</table>

تشکر و قدردانی

از مستندین محترم سازمان آب منطقه‌ای استان آذربایجان غربی به جهت فراهم کردن امکان تهیه نمونه‌های خاک از همه سازمان‌های مدل سازی، ارائه پیشنهادات و توصیه‌های فوق‌العاده‌ای و به عنوان شرکت مهندسی شاواز سوک، مهربانه، ۱۳۸۷.

بحث و نتیجه‌گیری

بطری‌خلاصه، نتایج این تحقیق را در جمله زیر می‌توان خلاصه نمود:

۱- در مصالح هسته‌ای با افزایش تنها موئر، تهویه‌برداری کاهش می‌یابد ولی این کاهش تهویه‌برداری در مقایسه تنها موئر بالاتر از حدود ۲۵۰ کیلوسکال ناجی می‌باشد.

۲- اسباب کردن نمونه ایجاد یا جدا اختلاف کم فشار صورت گرفته و سبب از فشار برگشتی جهت اطمینان از اشابه کننده نمونه استفاده شود. استفاده از گردانه‌ای هیدرولیکی و فشار برگشتی بالای استفاده از تهویه‌برداری بالا، جوان اعمال فشار برگشتی بالا باعث به‌هم خوردن بافت خاک می‌باشد.

۳- در هنگام ساخت نمونه‌های آزمایشگاهی به صورت دست خورده، باسیج ضوابط استاندارد تهویه‌برداری از نظر ساز و سازه‌های مورد استفاده و ابعاد پیش‌نهایت نمونه کاملاً رعایت گردید. همچنین نحوه پوشش نمونه با مصرف وال اعمال فشارهای جالب، بالا و پایین مناسب با روند افزایش تنها موئر حائز اهمیت است.
5- David E. Daniel, 1986. "Laboratory Hydraulic Conductivity Test For Saturated Soil".
The Laboratory study of the effect of the effective stress on decrease of permeability of the Urmia Earthfill Dam central clayey core, using the flexible wall permeability apparatus

Siamak Zadkaim
Member of Civil Faculty, Bonab Azad University
s_zadkarim@yahoo.com

Kazae Badv
Associate Professor, Department of Civil Engineering, Urmia University
k.badv@mail.urmia.ac.ir

Abstract:
Shahr Chai Earth fill Dam is being constructed 15 km west of Urmia City, Iran. The dam comprises an impervious clayey core and two low permeability slurry Trench wall in upstream and downstream side of the dam. In this study the Permeability of the core was measured using the triaxial flexible wall permeability apparatus. Using the core material with 10.7% design water content, cylindrical Samples with 10 cm diameter and 12 cm height were compacted in the compaction Mold using the modified ASHTO method. In each test, Tree samples were installed in the triaxial cell and then confining stress, and the hydraulic gradient of 10 were applied.

In each test series, with 3 identical samples, the applied effective stress was different From 50 kpa to 250 kpa, with 50 kpa stress difference between the tests. The effective stress-permeability diagram express that by increasing the effective stress from 50kpa to 250kpa, the hydraulic Conductivity of the samples decreased from 4.03×10^{-10} m/s to 1.24×10^{-11} m/s, respectively. The result Showed that the effect of effective stress over the permeability insignificant in higher than 250 kpa effective stresses.

Keywords:
Shahr Chai Earth fill Dam, Coefficient of Penetration, Core, triaxial test