تعداد نشریات | 418 |
تعداد شمارهها | 10,004 |
تعداد مقالات | 83,629 |
تعداد مشاهده مقاله | 78,547,752 |
تعداد دریافت فایل اصل مقاله | 55,626,291 |
Hybrid-DFT study and NBO interpretations of the conformational behavior of 1,2-dihalodisilanes | ||
Journal of the Iranian Chemical Research | ||
مقاله 1، دوره 4، شماره 4، اسفند 2011، صفحه 207-217 اصل مقاله (205.1 K) | ||
نویسندگان | ||
Davood Nori-Shargh* 1؛ Seiedeh Negar Mousavi1؛ Hooriye Yahyaei2؛ Somayye Yazdani1؛ Bahareh Ahmadi1 | ||
1Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran | ||
2Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran | ||
چکیده | ||
Hybrid-density functional theory (B3LYP/Def2-TZVPP) based method and NBO interpretation were used to investigate the conformational behavior of 1,2-dihalodisilanes [halo=F (1), Cl (2), Br (3), I (4)]. The B3LYP/Def2-TZVPP results showed that the anti conformations of compounds 1-4 are more stable than their corresponding gauche conformations. The stability of the anti conformation compared to the gauche conformation increases from compound 1 to compound 4. The NBO analysis of donor-acceptor interactions showed that the generalized anomeric effect (GAE) is in favor of the gauche conformations of compounds 1 and 2. Contrary to compounds 1 and 2, GAE is in favor of the anti conformations of compounds 3 and 4. The GAE values calculated (i.e. GAEanti-GAEgauche) increase from compound 1 to compound 4. On the other hand, the calculated dipole moment values for the gauche conformations increase from compound 1 to compound 3 but decreases from compound 3 to compound 4. Based on the results obtained, there is no conflict between the GAE and the electrostatic model impacts on the conformational preferences in compounds 1-3 but the electrostatic model can not rationalize the increase of the instability of the gauche conformation of compound 4 compared to its anti conformation on going from compound 3 to compound 4. Consequently, in the conflict between the GAE and the electrostatic model, the former succeeded in accounting for the increase of the anti conformation stability from compound 1 to compound 4. There is a direct correlation between the calculated GAE, Δ[rSi-Si(G)-rSi-Si(A)] parameters. The correlations between the GAE, bond orders, ΔGAnti-Gauche, ΔG‡(Gauche→Gauche′, C2v), ΔG‡(Anti→Gauche, C2), dipole-dipole interactions, structural parameters and conformational behaviors of compounds 1-4 have been investigated. | ||
کلیدواژهها | ||
Generalized Anomeric Effects؛ Stereoelectronic interactions؛ Ab initio؛ NBO؛ 1,2- dihalodisilanes | ||
مراجع | ||
[1] J.E. Lovelock, Nature. 230 (1971) 379-381. [2] M.J. Molina, F.S. Rowland, Nature. 249 (1974) 810-812. [3] F.S. Rowland, Am Sci. 77 (1989) 36-45. [4] D.A. Keller, D.C. Roe, P.H. Lieder, Fundam. Appl. Toxicol., 30 (1996) 213-219. [5] IARC Monographs on the Evaluation on the Carcinogenic Risk of Chemicals to Man, World Health Organization, International Agency for Research on Cancer: Geneva 20, (1979). [6] B.M. Wong, M.M. Fadri, S. Raman, J. Comput. Chem., and references therein, 29 (2008) 481-487. [7] T. Hirano, S. Nonoyama, T. Miyajima, Y. Kurita, T. Kawamura, H. Sato, J. Chem. Soc. Chem. Commun., (1986) 606-607 [8] P. Huber-Walchli, H.H. Gunthard, Spectrochim. Acta Part A. 37A (1981) 285-304. [9] W.D. Gwinn, K.S. Pitzer, J. Chem. Phys. 16 (1948) 303-309. [10] K. Kveseth, Acta Chem. Scand. A. 29 (1975) 307-311. [11] H.J. Bernstein, J. Chem. Phys. 17 (1949) 258- 261. [12] K. Tanabe, Spectrochim. Acta Part A. 28A (1972) 407-424. [13] Y. A. Pentin and V. M. Tatevskii, Dokl. Akad. Nauk SSSR, 108 (1956) 290. [14] T.H. Can, J.B. Peel, G.D. Willett, J. Chem. Soc. Faraday Trans. 2 (1977) 965- 290. [15] S. Mizushima, I. Watanabe, T. Simanouti, S. Yamaguchi, J. Chem. Phys. 17 (1949) 591-594. [16] H. Takeo, C. Matsumura, Y. Morino, J. Chem. Phys. 84 (1986) 4205-4210. [17] K.B. Wiberg, T.A. Keith, M.J. Frisch, M. Murcko, J. Phys. Chem. 99 (1995) 9072-9079. [18] K.B. Wiberg, M.A. Murcko, J. Phys. Chem. 91 (1987) 3616-3620. [19] D. Nori-Shargh, J.E. Boggs, Struct. Chem., 22 (2011) 253-262. [20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. KomaromiI, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.03, Gaussian, Inc, Wallingford (2004). [21] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652. [22] C. Lee, W. Yang, R.G. Parr , Phys Rev B. 37 (1988) 785-789 [23] W.J. Hehre, L. Radom, P.R. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York. (1986). [24] J.M. Seminario, P. Politzer, (Eds) Modern Density Function Theory, A Tool for Chemistry, Elsevier, Amsterdam. (1995). [25] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, Weinhold F, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, NBO Version 5.G. (2004). [26] N.D. Epiotis, R.L. Yates, R.J. Larson, C.R. Kirmayer, F. Bernardi, J Am Chem Soc. 99 (1977) 8379- 8388. [27] E.L. Eliel, S.H. Wilen, Stereochemistry of organic compounds, Wiley, New York. (1994). [28] E. Juaristi, G. Cuevas, The anomeric effect, CRC Press. Inc, Florida. (1995). [29] P. Dionne, M. St-Jacques, J Am Chem Soc. 109 (1987) 2616-2623. [30] W.F. Bailey, E.L. Eliel, J Am Chem Soc. 96 (1974) 1798-1806. D. Nori-Shargh & et al. / J. Iran. Chem. Res. 4 (2011) 207-217 217 [31] D. Nori-Shargh, F. Roohi, F. Deyhimi, R. Naeem-Abyaneh. J Mol Struct (THEOCHEM). 763 (2006) 21-28. [32] D. Nori-Shargh, F. Deyhimi, J.E. Boggs, S. Jameh-Bozorgh, R. Shakibazadeh, J Phys Org Chem. 20 (2007) 355-364. [33] D. Nori-Shargh, H. Yahyaei, J Mol Struct (THEOCHEM). 913 (2009) 8-15. [34] D. Nori-Shargh, N. Hassanzadeh, M. Kosari, S. Sharifi, J Mol Struct (THEOCHEM). 940 (2010) 129-134. [35] A. Zeinalinezhad A, Nori-Shargh D, Abbasi-Bakhtiari Z, Boggs JE J Mol Struct (THEOCHEM). 947 (2010) 52-57. [36] D. Nori-Shargh, H. Yahyaei, J.E. Boggs, J. Mol. Graph. Model. 28 (2010) 807-813. [37] D. Nori-Shargh, J.E. Boggs, J Phys Org Chem. Doi:10.1002/poc.1728. (2010). [38] K.B. Wiberg, M. Murcko, J. Phys. Chem. 91 (1987) 3616-3620. | ||
آمار تعداد مشاهده مقاله: 752 تعداد دریافت فایل اصل مقاله: 576 |