Reflection and Transmission at the Boundary of Two Couple Stress Generalized Thermoelastic Solids

R. Kumar 1,* , K. Kumar 2, R.C. Nautiyal 2

1Department of Mathematics, Kurukshetra University, Kurukshetra, Haryana, 136119, India
2Department of Mathematics, DeenBandhu Chhotu Ram University of Science and Technology, Sonipat, Haryana, 131001, India

Received 23 September 2015; accepted 10 December 2015

ABSTRACT

In this paper the reflection and transmission at a plane interface between two different couple stress generalized thermoelastic solid half spaces in context of Loard-Shulman(LS)[1967] and Green-Lindsay(GL)[1972] theories in welded contact has been investigated. Amplitude ratios of various reflected and transmitted waves are obtained due to incidence of a set of coupled longitudinal waves and coupled transverse waves. It is found that the amplitude ratios of various reflected and transmitted waves are functions of angle of incidence, frequency and are affected by the couple stress properties of the media. Some special cases are deduced from the present formulation.

Keywords: Couple stress thermoelastic solid; Longitudinal wave; Transverse wave; Reflection; Transmission; Amplitude ratios.

1 INTRODUCTION

Voigt[1] was the first to introduce the concept of couple stress in the material, by assuming that, the interaction between two parts of the continuum not only depends on force stress vector but also on the couple stress vector. This leads to the description of stresses by means of the two skew symmetric tensors namely force stress tensor and couple stress tensor. However Cosserat and Cosserat [2] gave the mathematical formulation to analyze material with couple stresses, by considering that deformation of the medium is described by displacement vector and an independent rotation vector. Displacement and rotation are associated with skew symmetric stresses and couple stresses through constitutive relations. Later on many alternative theories were given on the same idea.

the importance of couple stresses in granular medium. Lubarda [15] applied the couple stress theory to the study of anti plane strain problem of circular inclusions. The problem of multiply-connected materials with holes and multi-phase simply connected materials have been addressed in the review article by Jasiuk and Strazenski [16]. Akgoz and Civalek [17] has analyzed the micro sized plates resting on elastic medium using modified couple stress theory. Recently, Sharma and Kumar [18] studied the velocity dispersion in an elastic plate with microstructure: effects of characteristic length in a couple stress model.

Biot [19] formulated the theory of coupled thermoelasticity to eliminated the paradox inherent in the classical uncoupled theory that elastic changes have no effect on the temperature. The heat equations for the both theories are of parabolic type predicting infinite speeds of propagation for heat waves contrary to physical observations. Lord and Shulman [20] introduced relaxation time to explain the propagation of a thermal wave and presented a modified theory called generalized theory of thermomechanics (termed as LS theory). Using two relaxation time, Green and Lindsay [21] developed another generalized theory of thermoelasticity (termed as GL theory). Ram and Sharma [22] discussed reflection and transmission of micropolar thermoelastic waves with an imperfect bonding. Xue et al. [23] studied reflection and refraction of longitudinal displacement wave at interface between two micropolar elastic solid. Kumar et al. [24] presented reflection and transmission between two micropolar thermoelastic half-spaces with three-phase-lag model.

In the present paper, the reflection and refraction phenomenon at a plane interface between two couple stress generalized thermoelastic solid medium has been analyzed. In couple stress thermoelastic solid medium, potential functions are introduced to represent two longitudinal waves and two transverse waves. The amplitude ratios of various reflected and refracted waves to that of incident wave are derived numerically and depicted graphically.

2 BASIC EQUATIONS

Following Mindlin-Terstein [4], Lord-Shulman [20] and Green-Lindsay [21] the governing equations in couple-stress generalized thermoelastic solid are given by:

\[t_{ji} = \rho \ddot{u}_i \]
\[m_{ji} + e_{ik} t_{jk} = 0 \]
\[K \ast \nabla^2 T - \rho c_e \left(\frac{\partial T}{\partial t} + \tau_0 \frac{\partial^2 T}{\partial t^2} \right) = T \alpha \left(\frac{\partial u_{i,j}}{\partial t} + \tau_0 \frac{\partial u_{i,j}}{\partial t} \right) \]
\[t_{ij} = \lambda e_{ij} \delta_{ij} + 2 \mu e_{ij} - \frac{1}{2} e_{ik} m_{k,j} - \beta \left(1 + \tau_1 \frac{\partial}{\partial t} \right) \delta_{ij} \]
\[m_{ij} = 4 \beta k_{ij} \]
\[k_{ij} = \phi_{ij} \]
\[\phi_{ij} = \frac{1}{2} e_{pq} u_{q,p} \]

where \(t_{ij} \) is the stress components, \(e_{ij} \) is the strain components, \(u_i \) is displacement components, \(m_{ij} \) is the couple-stress components, \(\delta_{ij} \) is Kronecker’s delta, \(e_{ik} \) is alternate tensor, \(k_{ij} \) is curvature tensor, \(\rho \) is the density, \(\phi_{ij} \) is rotational vector, \(\tau_0, \tau_1 \) are thermal relaxation times with \(\tau_1 \geq \tau_0 \geq 0 \). Here \(n_o = 1, \tau_1 = 0 \) for L-S theory and \(n_o = 0 \) for G-L theory.

Eq.(1) with the help of Eqs. (2), (4)-(7) and without loss of generality assuming that \(\beta e_{pq} e_{iq} u_{q,p} \delta_{ik} = 0 \) takes the form
\[\rho \ddot{u}_j = (\lambda + \mu)u_{j,j,j} + \mu \nabla^2 u_j + \alpha \left(e_{ijk} e_{ipq} u_{q,p} \right)_{ij} - \beta \left(1 + \tau_1 \frac{\partial}{\partial t} \right) T_{ij} \]

(8)

3 FORMULATION OF THE PROBLEM

We consider two couple stress homogenous isotropic generalized thermoelastic solid half spaces medium \(M_1 \) \((0 < x_3 < \infty)\) and medium \(M_2 \)(\(-\infty < x_3 < 0\)). The two media are in contact with each other at the plane \(x_3 = 0 \) of the rectangular Cartesian coordinate system \((x_1, x_2, x_3)\) with an origin on the surface \(x_3 = 0 \) and \(x_3 \) axis pointing vertically downwards into the medium \(M_1 \). We choose \(x_1 \) axis in the direction of wave propagation so that all particle on the line parallel to \(x_2 \) axis are equally displaced. Therefore all the field quantities are independent of \(x_2 \).

For two dimensional problems, we assume the displacement vector as:

\[u_i = (u_i, 0, u_3) \]

(9)

We introduce the potential functions \(\phi \) and \(\psi \) through the relation:

\[u_1 = \frac{\partial \phi}{\partial x_1} - \frac{\partial \psi}{\partial x_3}, u_3 = \frac{\partial \phi}{\partial x_3} + \frac{\partial \psi}{\partial x_1} \]

(10)

We define the dimensionless quantities as:

\[x' = \frac{\omega^*}{c_1} x_3, t' = \frac{\omega^*}{c_1} t, \quad t'' = \frac{t''}{\beta T_0}, m' = \frac{m'}{c_1 \beta T_0}, C_1^2 = \frac{\lambda + 2 \mu}{\rho}, \quad m^* = \frac{m^*}{\mu} \lambda + \rho \alpha, \]

\[u'_i = \frac{\omega^*}{c_1} u_i, T' = \frac{T'}{T_0}, \tau_1' = \frac{\omega^*}{c_1}, \tau_0' = \frac{\omega^*}{\tau_0}, \tau_0 = \frac{\omega^*}{\tau_0} T_0, h' = \frac{c_i h}{\omega^*} \]

(11)

Upon introducing the quantities defined by Eq. (11) in Eq. (8) and with the aid of (4)-(7), (9) and (10) after suppressing the primes, we obtain

\[\nabla^2 \phi - a_{13} \left(1 + \tau_1 \frac{\partial}{\partial t} \right) T = \ddot{\phi} \]

(12)

\[\nabla^2 \psi - a_{12} \nabla^4 \psi = \frac{c_1^2}{c_2^2} \ddot{\psi} \]

(13)

\[\nabla^2 T - a_6 \left(\frac{\partial T}{\partial t} + \tau_0 \frac{\partial^2 T}{\partial t^2}\right) = a_7 \delta \left(\frac{\partial u_{i,j}}{\partial t} + \tau_0 \frac{\partial^2 u_{i,j}}{\partial t^2}\right) \]

(14)

\[t_{ij} = a_8 \delta e + a_9 (u_{i,j} + u_{j,i}) - a_6 e_{ipq} e_{ipq} u_{q,p} - \beta \left(1 + \tau_1 \frac{\partial}{\partial t} \right) T \delta_{ij} \]

(15)

\[m_{ij} = a_6 e_{ipq} u_{q,p} + a_6 e_{ipq} u_{q,p} \]

(16)

where
\[a_i = \frac{\lambda}{\beta \eta_i^2}, a_{i0} = \frac{\mu}{\beta \eta_i^2}, a_{i1} = \frac{2\alpha \omega^2}{c_i^2 \beta \eta_i^2}, a_{i2} = \frac{2\beta \omega^2}{c_i^2 \beta \eta_i^2}, b_i = \frac{\rho c_i^2}{K^* \omega^2}, b_{i0} = \frac{c_i^2 \beta}{K^* \omega^2} \]

The Eq. (13) corresponds to purely transverse wave mode that decouples from rest of the motion and is not affected by the thermal effect but affected by the effect of couple stress. We assume the solution of the form

\[(\phi, \psi, T) = (\phi_1, \psi_1, T_1) e^{i(k(x_1 \sin \theta - x_2 \cos \theta) - \omega t)} \]

where \(k \) is the wave number and \(\omega \) is the circular frequency. Substituting the values of \(\phi, \psi \) and \(T \) from Eq. (17) in Eqs. (12)-(14), we obtain

\[AV^4 + BV^2 + C = 0 \]

\[DV^4 + EV^2 + F = 0 \]

where \(V = \frac{\omega}{k} \) is the velocity of waves, and \(A = l_1, B = -a_1, C = 1, D = \frac{c_i^2}{\lambda + \mu}, E = -\frac{1}{a_8}, F = -\omega^2 \).

Let the roots of the Eq. (18) be denoted by \(V_i^2 (i = 1, 2) \). Two positive values of \(V \) in the descending order will be the velocities of longitudinal waves (P) and thermal waves (T). Similarly, the roots of Eq. (19) be denoted by \(V_i^2 (i = 3, 4) \) and two positive roots of \(V \) of Eq. (19) are the velocities of reflected transverse waves (SV1 and SV2).

4 REFLECTION AND TRANSMISSION

We consider a longitudinal waves (P) or thermal waves (T) or transverse waves (SV1 or SV2) propagating through the medium \(M_1 \) and is incident at the plane \(x_3 = 0 \). Corresponding to each incident wave, we get reflected longitudinal wave (P), thermal wave (T), transverse waves (SV1 and SV2) in medium \(M_1 \) and transmitted longitudinal wave (P), thermal wave (T), transverse waves (SV1 and SV2) in medium \(M_2 \) as shown in Fig.1.
5 BOUNDARY CONDITIONS

5.1 Mechanical conditions

The boundary conditions are the continuity of normal stress, tangential stress, tangential couple stress, displacement components and rotations vector at the interface of two couple stress generalized thermoelastic solid half-spaces. Mathematically, these can be written as:

\[
\begin{align*}
\sigma_{33} &= \sigma'_{33} \\
\sigma_{31} &= \sigma'_{31} \\
\tau_{32} &= \tau'_{32} \\
\bar{u}_1 &= \bar{u}'_1 \\
\bar{u}_3 &= \bar{u}'_3 \\
\phi_2 &= \phi'_2
\end{align*}
\at x_3 = 0
\]

(20)

5.2 Thermal Condition

The thermal condition corresponding to insulated boundary is given by

\[
\begin{align*}
T &= \bar{T} \\
K \frac{\partial T}{\partial x_3} &= K \frac{\partial \bar{T}}{\partial x_3}
\end{align*}
\at x_3 = 0
\]

(21)

In view of (17) we assume the values of \(\phi, \psi \) and \(T \) for medium \(M_1 \) as:

\[
(\phi, T) = \sum_{i=1}^{2} (1,b_i) \left[A_{0i} e^{i(k \{x_1 \sin \theta_i - x_3 \cos \theta_i\} \cdot \omega t)} + P_i \right]
\]

(22)

\[
\psi = \sum_{j=3}^{4} B_{0j} \left[e^{i(k \{x_1 \sin \theta_j - x_3 \cos \theta_j\} \cdot \omega t)} + P_j \right]
\]

(23)

We attach bar notation for medium \(M_2 \), then the values of \(\bar{\phi}, \bar{\psi} \) and \(\bar{T} \) are taken as:

\[
(\bar{\phi}, \bar{T}) = \sum_{i=1}^{2} (1,\bar{b}_i) \left[\bar{A}_i e^{i(k \{x_1 \sin \bar{\theta}_i - x_3 \cos \bar{\theta}_i\} \cdot \omega t)} \right]
\]

(24)

\[
\bar{\psi} = \sum_{j=3}^{4} \bar{B}_j \left[e^{i(k \{x_1 \sin \bar{\theta}_j - x_3 \cos \bar{\theta}_j\} \cdot \omega t)} \right]
\]

(25)

where

\[
P_i = A_i e^{i(k \{x_1 \sin \theta_i - x_3 \cos \theta_i\} \cdot \omega t)},
\]

\[
P_j = e^{i(k \{x_1 \sin \theta_j - x_3 \cos \theta_j\} \cdot \omega t)},
\]

\[
b_i = \left(-1 + V_i^2 \right) \frac{k^2}{a_s (1 - ik \rho_i V_i \tau_i)} \bar{b}_i = \left(-1 + V_i^2 \right) \frac{k^2}{a_s (1 - ik \rho_i V_i \tau_i)}
\]

\(A_{0i} \) and \(A_i \) (\(i = 1, 2 \)) are the amplitudes of incident and reflected longitudinal waves(P) and thermal waves (T) respectively, where \(B_{0j} \) and \(B_j \) (\(j = 3, 4 \)) are the amplitudes of incident and reflected transverse waves (SV1 and
SV2) respectively. \(\bar{A}_i \) (\(i = 1,2 \)) and \(\bar{B}_j \) (\(j = 3,4 \)) are the amplitudes of transmitted plane waves (P), thermal waves (T) transmitted transverse waves (SV1 and SV2) respectively.

In order to satisfy the boundary conditions, the extension of Snell’s law is given by

\[
\frac{\sin \theta_1}{V_0} = \frac{\sin \theta_2}{V_1} = \frac{\sin \theta_3}{V_2} = \frac{\sin \theta_4}{V_3} = \frac{\sin \bar{\theta}_1}{V_4} = \frac{\sin \bar{\theta}_2}{V_5} = \frac{\sin \bar{\theta}_3}{V_6} = \frac{\sin \bar{\theta}_4}{V_7} \quad (26)
\]

where

\[
V_1 = V_2 = V_3 = V_4 = V_5 = V_6 = V_7 = V \quad \text{at} \quad x_3 = 0 \quad (27)
\]

Making use of potentials given by Eqs. (22)-(25) in the boundary conditions given by Eqs. (20) and (21) and with aid of (26) and (27), we obtain a system of eight non-homogeneous equations, which can be written as:

\[
\sum_{i,j=1}^{8} d_{ij} Z_j = Y_i \quad (28)
\]

where

\[
\begin{align*}
d_{ii} &= -k^2 a_i - k^2 a_0 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 - \delta \bar{b}_i, \quad d_{i,j} = -k^2 a_i \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 \sin \theta_j, \quad \\
&= k^2 \bar{a}_i + k^2 \bar{a}_0 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 + \delta \bar{b}_i, \quad d_{1,m} = k^2 \bar{a}_0 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 + a_1 k^4, \\
&= -2a_0 k^2 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 \sin \theta_j, \quad d_{2,j} = a_0 k^2 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 + a_1 k^4, \\
&= 2 \pi^2 k^2 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 \sin \theta_j, \quad d_{2,m} = - \bar{a}_0 k^2 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 + a_1 k^4, \\
&= -a_1 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0, \quad d_{3,m} = \bar{a}_1 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0, \\
&= \sin \theta_i, d_{4,j} = -a_1 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 \sin \theta_j, \quad d_{4,i} = - \sin \bar{\theta}_i, d_{5,m} = \bar{a}_1 \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0, \\
&= \frac{1}{V_0} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0, \quad d_{5,j} = \sin \theta_j, d_{5,s} = - \frac{1}{V_0} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 \sin \theta_j, \quad d_{5,i} = - \sin \bar{\theta}_j, \\
&= -k^2, \quad d_{6,j} = k^2 d_{6,i} = b_i, \quad d_{7,j} = - \bar{b}_i, \quad d_{6,i} = K^* b_i \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0 \sin^2 \theta_0, \\
&= K^* \bar{b}_i \frac{1}{V_0^2} \left[\frac{V_o}{V_j} \right]^2 - \sin^2 \theta_0, \quad i = 1,2, \quad j = 3,4, \quad l = 5,6, \quad m = 7,8
\end{align*}
\]
Z_1 = \frac{A_1}{A}, Z_2 = \frac{A_2}{A}, Z_3 = \frac{B_1}{A}, Z_4 = \frac{B_2}{A}, Z_5 = \frac{A_1}{A}, Z_6 = \frac{B_3}{A}, Z_7 = \frac{B_4}{A}, Z_8 = \frac{B_5}{A}

And

\begin{align*}
V_0 &= \{P_1\} & \text{for incident P-wave} \\
V_2 &= \text{for incident T-wave} \\
V_3 &= \text{for incident SV 1-wave} \\
V_4 &= \text{for incident SV 2-wave.}
\end{align*}

For incident P-wave:
\begin{align*}
A' &= A_{01}, A_{02} = B_{01} = B_{02} = 0, \\
Y_1 &= -d_{11}, Y_2 = d_{21}, Y_3 = d_{33}, Y_4 = -d_{41}, Y_5 = d_{51}, Y_6 = d_{64}, Y_7 = -d_{71}, Y_8 = d_{81}
\end{align*}

For incident T-wave:
\begin{align*}
A' &= A_{02}, A_{01} = B_{01} = B_{02} = 0, \\
Y_1 &= -d_{12}, Y_2 = d_{22}, Y_3 = d_{32}, Y_4 = -d_{42}, Y_5 = d_{52}, Y_6 = d_{62}, Y_7 = -d_{72}, Y_8 = d_{82}
\end{align*}

For incident SV1-wave:
\begin{align*}
A' &= B_{01}, A_{01} = A_{02} = B_{02} = 0, \\
Y_1 &= d_{13}, Y_2 = -d_{23}, Y_3 = d_{33}, Y_4 = d_{43}, Y_5 = -d_{53}, Y_6 = -d_{63}, Y_7 = d_{73}, Y_8 = d_{83}
\end{align*}

For incident SV2-wave:
\begin{align*}
A' &= B_{02}, A_{01} = A_{02} = B_{01} = 0, \\
Y_1 &= d_{14}, Y_2 = -d_{24}, Y_3 = d_{34}, Y_4 = d_{44}, Y_5 = -d_{54}, Y_6 = -d_{64}, Y_7 = d_{74}, Y_8 = d_{84}
\end{align*}

6 SPECIAL CASES

If \(n_0 = 0, \tau_i > 0 \) in Eq. (28), gives the resulting expression for couple stress thermoelastic medium with two relaxation times.

If \(n_0 = 1, \tau_i = 0 \) in Eq. (28), gives the value of resulting expression for couple stress thermoelastic medium with one relaxation time.

If \(\tau_0 = \tau_i = 0 = n_0 \) in Eq. (28), we find the resulting expression for couple stress thermoelastic media.

7 NUMERICAL RESULTS AND DISCUSSION

We now consider a numerical example to explain the analytical procedure presented earlier for LS and GL theories with couple stress effect and without couple stress effect. The absolute values of amplitude ratio are computed for the angle of incidence lying between \(0^\circ \leq \theta_0 \leq 90^\circ \). Numerical computations of these amplitude ratios are also made for the particular cases. The physical constants for medium \(M_1 \) are taken as:
The physical constants for medium M_2 are as:

$\bar{\lambda} = 7.76 N/m^2, \bar{\mu} = 3.28 N/m^2, \bar{\rho} = 1.74 kg/m^3, \bar{\alpha} = 1.021 \times 10^3 kg^{-1} deg^{-1},$

$\bar{K} = 1.7 \times 10^3 Wm^{-1} deg^{-1}, \bar{\beta} = 296 K, \bar{\alpha} = 2.05 N, \bar{\beta'} = 2.68 Nm^{-1} deg^{-1}, \beta_0 = 1.5 N, \tau_0 = .613, \tau_1 = .413.$

We have used MATLAB 7.12.0.635 (R2011a) to find amplitude ratios for angle of incidence of the incident longitudinal wave (P), thermal wave (T) and incident transverse (SV-I and SV-II) waves. The amplitude ratios for reflected longitudinal waves reflected thermal waves reflected transverse waves in medium M_1 and corresponding transmitted waves in medium M_2 are shown graphically in Figs. 2–33.

In all the Figures [] and [] present the values of amplitude ratio for couple stress generalized thermoelastic solids in context of Lord-Shulman and Green-Lindsay theories and denoted by CLS and CGL respectively while the words WCLS and WCGL corresponds to the thermoelastic theory in context of Lord-Shulman and Green-Lindsay represented by [] and [] respectively. The variations of the amplitude ratios $|Z_i|, (i = 1, 2, ..., 8)$ of various reflected and transmitted waves for CLS, CGL, WCLS and WCGL with angle of emergence θ_0 of different cases of the incident wave (P-, T-, SV1- or SV2-) have been shown in Figs. 2–33.

7.1 Incident P-wave

The variations of the absolute values of the amplitude ratios of various reflected and transmitted waves with angle of incidence varying from $0^\circ \leq \theta_0 \leq 90^\circ$ of incident P-wave have been shown in Figs. 2-9.

Fig. 2 shows the variation of amplitude ratios of reflected P-wave with angle of emergence for CLS, CGL, WCLS and WCGL. It is seen that the values of amplitude ratios decrease for CLS and CGL for small values of angle of emergence and oscillate with increase in angle of emergence. The values of amplitude ratio for WCLS and WCGL theories increase for $0^\circ \leq \theta_0 \leq 20^\circ$. Also it is noticed the values of for WCLS is the largest for the small values of angle of emergence ($0^\circ \leq \theta_0 \leq 12^\circ$). For the intermediate values of angle of emergence the values of amplitude ratio for GL theory are the highest. The values of amplitude ratio for CLS are greater than the CGL, WCLS and WCGL as θ_0 increases.
Fig. 3
Variation of amplitude ratios of reflected T-waves versus angle of incidence.

Fig. 3 presents the variation of amplitude ratios of the reflected T-wave with angle of emergence θ_0 for various theories. It is noticed that values of amplitude ratio $|Z_2|$ decrease for all CLS, CGL, WCLS and WCGL for $0^\circ \leq \theta_0 \leq 10^\circ$ whereas the values of amplitude ratios oscillates for all the theories for intermediate values of angle of emergence and decrease smoothly as θ_0 increases for WCLS and WCGL.

Fig. 4
Variation of amplitude ratios of reflected SV1-waves versus angle of incidence.

The variations of amplitude ratios of reflected SV1- wave with angle of emergence for various theories are shown in Fig. 4. The values of amplitude ratio $|Z_3|$ decrease sharply for small values of angle emergence then decrease smoothly as the value of angle of emergence increases. The values of amplitude ratio $|Z_3|$ for CGL theory are greater for all values of angle of emergence.

Fig. 5
Variation of amplitude ratios of reflected SV2 -waves versus angle of incidence.
Fig. 5 depicts that variation of amplitude ratios of transmitted SV2-wave with angle of emergence. It is evident that values of amplitude ratio $|Z_4|$ decrease sharply for the initial value of angle of emergence and decrease smoothly for the large values of angle of emergence.

![Amplitude ratios vs angle of emergence](image1)

Fig. 6 Variation of amplitude ratios of transmitted P-waves versus angle of incidence.

The variation of amplitude ratios $|Z_5|$ (transmitted P-wave) for different theories CLS, CGL, WCLS and WCGL are shown in Fig. 6. It can be seen that the values of $|Z_5|$ increase sharply for CLS and CGL theories for small values of angle of emergence then decrease smoothly whereas the values of amplitude ratios of transmitted P-wave for WCLS and WC have very low values in comparison to CLS and CGL.

![Amplitude ratios vs angle of incidence](image2)

Fig. 7 Variation of amplitude ratios of transmitted T-waves versus angle of incidence.

Fig. 7 shows the variation of amplitude ratios $|Z_6|$ of transmitted T-wave for CLS, CGL, WCLS and WCGL with respect to angle of emergence. The values of $|Z_6|$ decrease sharply for small values, oscillates for intermediate values and decrease for large values of angle of emergence for CLS and CGL.

![Amplitude ratios vs angle of incidence](image3)

Fig. 8 Variation of amplitude ratios of transmitted SV1-waves versus angle of incidence.
Fig. 8 represents the variation of amplitude ratios $|Z_1|$ of transmitted SV1-wave with respect to angle of emergence. It is noticed that the values of $|Z_1|$ decrease for $0^\circ \leq \theta_0 \leq 10^\circ$ for CLS and CGL and the values of amplitude ratio $|Z_1|$ for CLS are greater than CGL. The values of amplitude ratio $|Z_1|$ decrease for WCLS and WCGL for $0^\circ \leq \theta_0 \leq 33^\circ$, $45^\circ \leq \theta_0 \leq 90^\circ$ and behavior is reverse for the remaining values of angle of emergence for WCLS and WCGL.

![Fig.8](image1)

Fig. 8
Variation of amplitude ratios of transmitted SV1-waves versus angle of emergence.

Fig. 9 shows the variation of amplitude ratios $|Z_2|$ with respect to angle of emergence for CLS, CGL, WCLS and WCGL. It is observed that the values of $|Z_2|$ decrease sharply for small values of angle of emergence for all CLS, CGL, WCLS and WCGL. The values of $|Z_2|$ increase for $6^\circ \leq \theta_0 \leq 51^\circ$ for CLS theory and for $6^\circ \leq \theta_0 \leq 54^\circ$ for CGL and decrease for the remaining values of angle of emergence. The values of $|Z_2|$ oscillate for WCLS and WCGL.

Fig. 9
Variation of amplitude ratios of transmitted SV2-waves versus angle of incidence.

7.2 Incident T-wave

![Fig.9](image2)

It is clear from Fig. 10 that values of amplitude ratio $|Z_3|$ decrease for CLS, CGL, WCLS and WCGL with increase in angle of emergence (θ_0) from 0° to 10° then fluctuate in the range $10^\circ \leq \theta_0 \leq 50^\circ$ and decrease as θ_0 increase.

Fig. 10
Variation of amplitude ratios of reflected P-waves versus angle of incidence.
Fig. 11 indicates that the values of amplitude ratio $|Z_2|$ increase in the range $0^\circ \leq \theta_0 \leq 20^\circ$ and fluctuate with the increase in the angle of emergence for CLS and CGL. But the values of $|Z_2|$ in case of CLS are higher in comparison to CGL.

Fig. 12 depicts the variation of amplitude ratio for reflected SV1- wave for CLS, CGL, WCLS and WCGL. It shows that the values of amplitude ratio $|Z_3|$ decrease sharply in the range $0^\circ \leq \theta_0 \leq 5^\circ$ for CLS and LS whereas the values of amplitude ratio $|Z_3|$ decrease smoothly for CGL and WCLS for small value of θ_0. The values of $|Z_3|$ oscillates for intermediate value of angle of emergence for all the cases and decrease smoothly as the angle of emergence (θ_0) increases.

Fig. 13 shows the variation of amplitude ratio $|Z_4|$ for reflected SV2- wave. The behavior of amplitude ratio for both CGL and CLS is similar with difference in magnitude value.
Fig. 14 shows the variation of amplitude ratio $|Z_s|$ for transmitted P-wave. The value of amplitude ratio decrease $|Z_s|$ in the range $0^\circ \leq \theta_0 \leq 3.5^\circ$ thereafter increase in the range $3.5^\circ \leq \theta_0 \leq 20^\circ$ and decrease as the angle of emergence increase for both CLS and CGL. The Values of amplitude ratio $|Z_s|$ fluctuate for WCLS and WCGL with the increase in angle of emergence. The values of amplitude ratio for WCLS and WCGL are very low in comparison to CLS and CGL.

Fig. 15 shows the variation of amplitude ratio $|Z_s|$ for transmitted T-wave. The values of amplitude ratio $|Z_s|$ decrease in the range $0^\circ \leq \theta_0 \leq 4.5^\circ$ thereafter increase in the range $4.5^\circ \leq \theta_0 \leq 15.5^\circ$ and decrease smoothly as the value of angle of emergence increase for CLS and CGL. Whereas the values of amplitude ratio $|Z_s|$ oscillate for WCLS and WCGL for all value of θ_0.

Fig. 16 shows the variation of amplitude ratio of transmitted SV1-waves versus angle of incidence.
Fig. 16 represents the variation of amplitude ratio $|Z_1|$ for SV1-transmitted wave. It can be seen that values of amplitude ratio $|Z_1|$ behave alike for all CLS, CGL, WCGL and WCLS with difference in the magnitude values. The values of amplitude ratio decrease sharply for small values of θ_0 then oscillate for intermediate values and decrease as the angle of emergence increases.

Fig. 17 depicts the variation of amplitude ratio $|Z_s|$ for transmitted SV2-wave. It can be observed that the values of amplitude ratio $|Z_s|$ decrease in the range $0^\circ \leq \theta_0 \leq 2.9^\circ$ for all the theories CLS CGL, WCLS and WCGL. The values of amplitude ratio $|Z_s|$ increase in the range $2.9^\circ \leq \theta_0 \leq 25^\circ$ and decrease smoothly as the angle of emergence increases for CLS and CGL theories. The values of amplitude ratio $|Z_s|$ increase in the range $2.9^\circ \leq \theta_0 \leq 31^\circ$ and decrease as the angle of emergence θ_0 increase for WCLS and WCGL.

7.3 Incident SV-1 wave

Fig. 18 shows the variation of amplitude ratio $|Z_1|$ for reflected P-wave. The value of amplitude ratio $|Z_1|$ decrease sharply in the range $0^\circ \leq \theta_0 \leq 2.9^\circ$ thereafter increase in the range $2.9^\circ \leq \theta_0 \leq 50^\circ$ and decrease for the remaining value of angle of emergence for CGL. The value of amplitude ratio $|Z_1|$ increase in the range $0^\circ \leq \theta_0 \leq 2.5^\circ$ and decrease smoothly as the values of angle of emergence θ_0 increases for CLS. The values of amplitude ratio $|Z_1|$ increase in $0^\circ \leq \theta_0 \leq 3^\circ$, oscillate when $3^\circ \leq \theta_0 \leq 35^\circ$ and decrease for the remaining values of θ_0 for WCLS and WCGL.
Fig. 19 shows the variation of amplitude ratio $|Z_2|$ for reflected P-wave. It can be seen that the behavior of $|Z_2|$ and $|Z_1|$ is approximate similar with difference in the magnitude values.

Fig. 20 represents the variation of amplitude ratio $|Z_1|$ of reflected SV1-wave. It can be observed that the behavior of $|Z_1|$ is reverse for CGL and CLS theories but the behavior is similar for WCLS and WCGL. The values of $|Z_1|$ decrease in $0^\circ \leq \theta \leq 4^\circ$ thereafter it increases as the value of angle of emergence increases for CGL theory. The values of amplitude ratio $|Z_1|$ decrease for small values of θ, oscillate for intermediate values and increase for large values of θ for WCLS and WCGL.

Fig. 21
Variation of amplitude ratios of reflected SV2-waves versus angle of incidence.
Fig. 21 depicts the variation of amplitude ratio $|Z_4|$ of reflected SV2-wave. The values of $|Z_4|$ increase when $0^0 \leq \theta_e \leq 2^0$ and thereafter the values of amplitude ratio $|Z_4|$ decrease with increase in angle of emergence for CLS. The values of amplitude ratio $|Z_4|$ decrease for with the increase in angle of emergence for CGL.

![Graph showing variation of amplitude ratios of transmitted P-waves versus angle of incidence.](image)

Fig.22
Variation of amplitude ratios of transmitted P-waves versus angle of incidence.

Fig. 22 shows the variation of amplitude ratio $|Z_5|$ for transmitted P-wave. The values of amplitude ratio $|Z_5|$ decrease very sharply for small value of angle of emergence and stationary for the remaining values of angle of emergence for CLS whereas the values of $|Z_5|$ increase for CGL for all values of angle of emergence.

![Graph showing variation of amplitude ratios of transmitted T-waves versus angle of incidence.](image)

Fig.23
Variation of amplitude ratios of transmitted T-waves versus angle of incidence.

Fig. 23 represents the variation of amplitude ratio $|Z_6|$ of transmitted T-wave. The values of amplitude ratio $|Z_6|$ decrease sharply in the range $0^0 \leq \theta_e \leq 2^0$ for CLS and WCLS. The values of $|Z_6|$ fluctuate with the increase in the angle of emergence for CGL and WCGL and the values remain very low for the whole range.

![Graph showing variation of amplitude ratios of transmitted SV1-waves versus angle of incidence.](image)

Fig.24
Variation of amplitude ratios of transmitted SV1-waves versus angle of incidence.
Fig. 24 represents the variation of amplitude ratio $|Z_1|$ of transmitted SV1-wave. The values of amplitude ratio $|Z_1|$ decrease sharply in the range $0^\circ \leq \theta_0 \leq 2^\circ$ for CLS. The values of $|Z_1|$ fluctuate with the increase in the angle of emergence for CGL, WCGL and WCLS and the values remain very low for the whole range.

Fig. 25 represents the variation of amplitude ratio $|Z_2|$ of transmitted SV2-wave. The values of amplitude ratio $|Z_2|$ decrease sharply in the range $0^\circ \leq \theta_0 \leq 2^\circ$ for CLS and WCLS. But the values of $|Z_2|$ remain higher for WCLS in comparison to CLS.

7.4 Incident SV2-wave

Fig. 26
Variation of amplitude ratios of reflected P-waves versus angle of incidence.

Fig. 27
Variation of amplitude ratios of reflected T-waves versus angle of incidence.
Fig. 26 shows the variation of amplitude ratio $|Z_1|$ for reflected P-wave. The value of $|Z_1|$ decreases when $0^\circ \leq \theta_0 \leq 1.9^\circ$, increases in the range $1.9^\circ \leq \theta_0 \leq 10^\circ$ and decreases smoothly for the remaining values of θ_0 for CGL. The values of $|Z_1|$ decrease when $0^\circ \leq \theta_0 \leq 1.5^\circ$, increase in $1.5^\circ \leq \theta_0 \leq 60^\circ$ and decrease with the decrease in the values of θ_0 for CLS. Fig. 27 depicts the variation of amplitude ratio $|Z_2|$ for reflected T-wave. The behavior of $|Z_2|$ is similar to that of $|Z_1|$ with change in the magnitude values.

Figs. 28 and 29 show the variation of amplitude ratio $|Z_3|$ and $|Z_4|$ of reflected SV1- and SV2- waves respectively. It can be observed that the behavior of $|Z_3|$ and $|Z_4|$ is similar with difference in the magnitude values.
Figs. 30 and 31 depict the variation of amplitude ratio $|Z_5|$ and $|Z_6|$ of transmitted P- and T- waves respectively. It can be observed that the values of $|Z_5|$ and $|Z_6|$ decrease sharply when $0^\circ \leq \theta_0 \leq 1^\circ$ for CLS.

Figs. 32 and 33 represent the behavior of amplitude ratio of $|Z_7|$ and $|Z_8|$ of transmitted SV1- and SV2- waves respectively. The values of $|Z_7|$ and $|Z_8|$ decrease sharply for small values of angle of emergence and decrease smoothly for the remaining values of θ_0 for CLS theory whereas the values of amplitude ratios $|Z_7|$ and $|Z_8|$ fluctuate very close to zero for CGL.
8 CONCLUSIONS

The expressions of amplitude ratios of reflection and transmission of waves have been obtained at the interface of two couple stress generalized thermoelastic solids. Some particular cases of interest have been derived from the present investigation. It can be observed that the couple stress effect plays an important role on the reflection and transmission phenomenon. It is observed that the values of amplitude ratio of reflected P-, T- SV1- and SV2- are oscillatory and the values of amplitude ratio of transmitted P-, T- SV1- are decreasing when P-, T- and SV1- wave is incident. The trends of amplitude ratios of reflected P- and T- waves are oscillatory when SV2- wave is incident. The values of reflected SV1-, SV2- and transmitted P-, T-, SV1- and SV2- decrease when SV2- wave is incident. The model studied in the present paper may be helpful to experimental scientists/seismologists working in various fields such as earthquake estimation, and exploration of mineral ores present in the earth’s crust.

REFERENCES

