| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,584,392 |
| تعداد دریافت فایل اصل مقاله | 56,278,822 |
ON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS | ||
| International Journal of Mathematical Modelling & Computations | ||
| مقاله 2، دوره 1، 3 (SUMMER)، فروردین 2011، صفحه 171-174 اصل مقاله (143.41 K) | ||
| نویسندگان | ||
| M. A. Rakha1؛ A. K. Rathie2؛ P. Chopra3 | ||
| 1Faculty of Science - Suez Canal University - Ismailia Egypt Department of Mathematics and Statistics | ||
| 2Rajasthan Technical University, Village: TULSI, Post-Jakhmund, Dist. BUNDI-323021, Rajasthan State India Vedant College of Engineering and Technology | ||
| 3Marudhar Engineering College, NH-11, Jaipur Road, Raisar, BIKANER-334 001, Rajasthan State India Department of Mathematics | ||
| چکیده | ||
| The aim of this research note is to prove the following new transformation formula \begin{equation*} (1-x)^{-2a}\,_{3}F_{2}\left[\begin{array}{ccccc} a, & a+\frac{1}{2}, & d+1 & & \\ & & & ; & -\frac{4x}{(1-x)^{2}} \\ & c+1, & d & & \end{array}\right] \\ =\,_{4}F_{3}\left[\begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \\ & & & & ; & -x \\ & c+1, & a-A, & a+A & & \end{array} \right], \end{equation*} where $A^2=a^2-2ad+cd$ after the equation. For d=c, we get a known quadratic transformations due to Gauss. The result is derived with the help of the generalized Gauss's summation theorem available in the literature. | ||
| کلیدواژهها | ||
| Gauss hypergeometric function؛ 2F1 Hypergeometric function؛ Contiguous function relation؛ Linear recurrence relation | ||
|
آمار تعداد مشاهده مقاله: 2,547 تعداد دریافت فایل اصل مقاله: 944 |
||