Abstract. Using a generalized translation operator, we obtain a generalization of Theorem 5 in [4] for the Bessel transform for functions satisfying the $(\delta, \gamma, 2)$-Bessel Lipschitz condition in $L_{2,\alpha}(\mathbb{R}^+)$.

Received: 12 August 2013, Revised: 28 September 2013, Accepted: 7 October 2013.

Keywords: Bessel operator, Bessel transform, Generalized translation operator.

1. Introduction and Preliminaries

Integral transforms and their inverses are widely used solve various in calculus, mechanics, mathematical, physics, and computational mathematics (see, e.g., [7, 9, 10]).

In [4], we proved theorem related the Bessel transform and (k, γ)-Bessel Lipschitz functions. In this paper, we prove a generalization of this theorem for this transform in the space $L_{2,\alpha}(\mathbb{R}^+)$. For this purpose, we use a generalized translation operator.

Assume that $L_{2,\alpha} = L_{2,\alpha}(\mathbb{R}^+)$, $\alpha > -\frac{1}{2}$, is the Hilbert space of measurable functions $f(x)$ on \mathbb{R}^+ with the finite norm

$$
\|f\|_{2,\alpha} = \left(\int_0^\infty |f(x)|^2 x^{2\alpha+1} dx\right)^{1/2}.
$$

*Corresponding author. Email: m.elhamma@yahoo.fr.
Let
\[B = \frac{d^2}{dt^2} + \frac{(2\alpha + 1)}{t} \frac{d}{dt}, \]
be the Bessel differential operator.

For \(\alpha > -\frac{1}{2} \), we introduce the Bessel normalized function of the first kind \(j_\alpha \) defined by
\[
j_\alpha(x) = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n}}{n! \Gamma(n + \alpha + 1)},
\]
where \(\Gamma(x) \) is the gamma-function (see [6]).

Lemma 1.1 [1] The following inequalities are valid for Bessel function \(j_\alpha \)

1. \(|j_\alpha(x)| \leq 1 \)
2. \(1 - j_\alpha(x) = O(x^2); \ 0 \leq x \leq 1. \)

Lemma 1.2 The following inequality is true
\[
|1 - j_\alpha(x)| \geq c,
\]
with \(x \geq 1 \), where \(c > 0 \) is a certain constant.

Proof Analog of Lemma 2.9 in [3] ■

The Bessel transform of a function \(f \in L_{2,\alpha} \) is defined (see [5, 6, 8]) by the formula
\[
\hat{f}(\lambda) = \int_0^\infty f(t) j_\alpha(\lambda t) t^{2\alpha+1} dt; \ \lambda \in \mathbb{R}^+.
\]

The inverse Bessel transform is given by the formula
\[
f(t) = (2^{\alpha} \Gamma(\alpha + 1))^{-2} \int_0^\infty \hat{f}(\lambda) j_\alpha(\lambda t) \lambda^{2\alpha+1} d\lambda.
\]

From [5], we have the Parseval’s identity
\[
\|\hat{f}\|_{2,\alpha} = (2^{\alpha} \Gamma(\alpha + 1)) \|f\|_{2,\alpha}.
\]

In \(L_{2,\alpha} \), consider the generalized translation operator \(T_h \) defined by
\[
T_h f(t) = c_\alpha \int_0^\pi f(\sqrt{t^2 + h^2 - 2th \cos \varphi}) \sin^{2\alpha} \varphi d\varphi,
\]
where
\[c_{\alpha} = \left(\int_{0}^{\pi} \sin^{2\alpha} \varphi d\varphi \right)^{-1} = \frac{\Gamma(\alpha + 1)}{\Gamma(1/2)\Gamma(\alpha + 1/2)} \]

From [2], we have

\[\widehat{(T_h f)(\lambda)} = j_{\alpha}(\lambda h) \widehat{f}(\lambda) \] \hspace{1cm} (1)

We note the important property of the Bessel transform: If \(f \in L_{2,\alpha} \) then

\[\widehat{Bf}(\lambda) = (-\lambda^2) \widehat{f}(\lambda). \] \hspace{1cm} (2)

The finite differences of the first and higher orders are defined as follows

\[\Delta_h f(x) = T_h f(x) - f(x) = (T_h - E_{2,\alpha}) f(x), \]

\[\Delta_h^k f(x) = \Delta_h(\Delta_h^{k-1} f(x)) = (T_h - E_{2,\alpha})^k f(x) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} T_h^i f(x), \] \hspace{1cm} (3)

where \(T_h^0 f(x) = f(x) \), \(T_h^i f(x) = T_h(T_h^{i-1} f(x)) \); \(i = 1, 2, ..., k; k = 1, 2, ..., \) and \(E_{2,\alpha} \) is a unit operator in \(L_{2,\alpha} \).

Let \(W_{2,\alpha}^k \) be the Sobolev space constructed by the Bessel operator \(B \), i.e.,

\[W_{2,\alpha}^k = \{ f \in L_{2,\alpha}, B^j f \in L_{2,\alpha}; j = 1, 2, ..., k \}. \]

In [4], we have the following result

Theorem 1.3 Let \(f \in L_{2,\alpha} \). Then the following are equivalents

1. \(f \in \text{Lip}(k, \gamma, 2); 0 < k < 1, \gamma \geq 0, \)
2. \(\int_{r}^{\infty} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O(r^{-2k}(\log r)^2\gamma) \) as \(r \to +\infty, \)

where

\[\text{Lip}(k, \gamma, 2) = \{ f \in L_{2,\alpha}, \|T_h f(t) - f(t)\|_{2,\alpha} = O \left(\frac{h^k}{(\log \frac{1}{h})^\gamma} \right) \text{ as } h \to 0 \}. \]

The main aim of this paper is to establish a generalization of Theorem 1.3

2. **Main Results**

In this section we present the main result of this paper. We first need to define the \((\delta, \gamma, 2)\)-Bessel Lipschitz class.
Definition 2.1 Let $0 < \delta < 1$, $\gamma \geq 0$ and $r = 0, 1, ..., k$. A function $f \in W_{2,\alpha}^k$ is said to be in the $(\delta, \gamma, 2)$-Bessel Lipschitz class, denoted by $\text{Lip}(\delta, \gamma, 2)$; if

$$\|\Delta_h^k B^r f(x)\|_{2,\alpha} = O\left(\frac{h^\delta}{(\log \frac{1}{h})^\gamma}\right) \text{ as } h \to 0.$$

Lemma 2.2 Let $f \in W_{2,\alpha}^k$. Then

$$\|\Delta_h^k B^r f(x)\|_{2,\alpha}^2 = \frac{1}{(2^\alpha \Gamma(\alpha + 1))^2} \int_0^\infty \lambda^{4r} |1 - j_\alpha(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda,$$

where $r = 0, 1, ..., k$

Proof From formula (2), we have

$$\widehat{B^r f}(\lambda) = (-1)^r \lambda^{2r} \widehat{f}(\lambda)$$ (4)

By formulas (1) and (4), we conclude that

$$\widehat{T_h^i B^r f}(\lambda) = (-1)^r \lambda^{2r} j_\alpha^i(th) \widehat{f}(\lambda), 1 \leq i \leq k.$$ (5)

From formulas (3) and (5) follows that the Bessel transform of $\Delta_h^k B^r f(x)$ is $(-1)^r \lambda^{2r}(j_\alpha(\lambda h) - 1)^k \widehat{f}(\lambda)$.

By Parseval’s identity we have the result. ■

Theorem 2.3 Let $f \in W_{2,\alpha}^k$. Then the followings are equivalents

1) $f \in \text{Lip}(\delta, \gamma, 2)$,

2) $\int_s^\infty \lambda^{4r} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O\left(\frac{s^{-2\delta}}{(\log s)^\gamma}\right) \text{ as } s \to +\infty.$

Proof 1) \implies 2) Assume that $f \in \text{Lip}(\delta, \gamma, 2)$. Then we have from Lemma 2.2

$$\|\Delta_h^k B^r f(x)\|_{2,\alpha}^2 = \frac{1}{(2^\alpha \Gamma(\alpha + 1))^2} \int_0^\infty \lambda^{4r} |1 - j_\alpha(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda,$$

If $\lambda \in [\frac{1}{h}, \frac{2}{h})$ then $\lambda h \geq 1$ and Lemma 1.2 implies that

$$1 \leq \frac{1}{c_{4k}} |1 - j_\alpha(\lambda h)|^{2k}.$$

Then
\[
\int_{1/h}^{2/h} \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \leq \frac{1}{c \epsilon k} \int_{1/h}^{2/h} \lambda^{4r} |1 - j_\alpha(\lambda h)|^{2k} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda
\]
\[
\leq \frac{1}{c \epsilon k} \int_0^\infty \lambda^{4r} |1 - j_\alpha(\lambda h)|^{2k} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda
\]
\[
= O \left(\frac{h^{2\delta}}{(\log \frac{1}{h})^{2\gamma}} \right).
\]

We have
\[
\int_s^{2s} \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \leq C s^{-2\delta},
\]
where \(C\) is a positive constant.

So that
\[
\int_s^\infty \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = \left[\int_s^{2s} \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda + \int_{2s}^{4s} \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda + \ldots \right]
\]
\[
\leq C \frac{s^{-2\delta}}{(\log s)^{2\gamma}} + C \frac{(2s)^{-2\delta}}{(\log 2s)^{2\gamma}} + C \frac{(4s)^{-2\delta}}{(\log 4s)^{2\gamma}} + \ldots
\]
\[
\leq C \frac{s^{-2\delta}}{(\log s)^{2\gamma}} \left(1 + 2^{-2\delta} + (2^{-2\delta})^2 + (2^{-2\delta})^3 + \ldots \right)
\]
\[
\leq CC_\delta \frac{s^{-2\delta}}{(\log s)^{2\gamma}},
\]
where \(C_\delta = (1 - 2^{-2\delta})^{-1}\) since \(2^{-2\delta} < 1\).

This proves that
\[
\int_s^\infty \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O \left(\frac{s^{-2\delta}}{(\log s)^{2\gamma}} \right)\quad \text{as } s \to +\infty
\]

2) \(\Rightarrow\) 1) Suppose now that
\[
\int_s^\infty \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O \left(\frac{s^{-2\delta}}{(\log s)^{2\gamma}} \right)\quad \text{as } s \to +\infty
\]

We write
\[
\int_0^\infty \lambda^{4r} |1 - j_\alpha(\lambda h)|^{2k} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = I_1 + I_2
\]
where
\[I_1 = \int_0^{1/h} \lambda^{4r} |1 - j_\alpha(\lambda h)| 2^h |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda, \]

and

\[I_2 = \int_{1/h}^{\infty} \lambda^{4r} |1 - j_\alpha(\lambda h)| 2^h |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda. \]

Estimate the summands \(I_1 \) and \(I_2 \) from above. It follows from the formula \(|j_\alpha(\lambda h)| \leq 1\) that

\[I_2 = \int_{1/h}^{\infty} \lambda^{4r} |1 - j_\alpha(\lambda h)| 2^h |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \]
\[\leq 4^k \int_{1/h}^{\infty} \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \]
\[= O \left(\frac{h^{2\delta}}{(\log \frac{1}{h})^{2\gamma}} \right) \]

To estimate \(I_1 \), we use the inequality (2) of Lemma 1.1

Set

\[\psi(x) = \int_x^{\infty} \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda. \]

Using integration by parts, we obtain

\[I_1 \leq -C_1 h^{4k} \int_0^{1/h} t^{4k} \psi'(t) dt \]
\[\leq C_1 \psi\left(\frac{1}{h} \right) + 4C_1 kh^{4k} \int_0^{1/h} t^{4k-1} \psi(t) dt \]
\[\leq C_2 h^{4k} \int_0^{1/h} t^{4k-1} \frac{1}{t} - 2^\delta (\log t)^{-2\gamma} dt \]
\[\leq C_3 h^{-2\delta} (\log \frac{1}{h})^{-2\gamma}, \]

where \(C_1, C_2 \) and \(C_3 \) are positive constants and this ends the proof. \(\blacksquare \)

Corollary 2.4 Let \(f \in W_{2,\alpha}^k \), and let

\[f \in \text{Lip}(\delta, \gamma, 2) \]

Then
\[
\int_{s}^{\infty} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O \left(\frac{s^{-2\delta-4\gamma}}{(\log s)^{2\gamma}} \right) \quad \text{as } s \to +\infty
\]

3. Conclusion
In this work we have succeeded to generalise the theorem 5 in [4] for the Bessel transform in the Sobolev space \(W_{2,\alpha}^k \) constructed by the Bessel operator \(B \). We proved that \(f \in \text{Lip}(\delta, \gamma, 2) \) if and only if \(\int_{s}^{\infty} \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O \left(\frac{s^{-2\delta}}{(\log s)^{2\gamma}} \right) \) as \(s \to +\infty \).

References