Recognition by prime graph of the almost simple group PGL(2, 25)

A. Mahmoudifar

Department of Mathematics, Tehran North Branch, Islamic Azad University, Tehran, Iran.

Received 24 December 2015; Revised 30 April 2016; Accepted 20 May 2016.

Abstract. Throughout this paper, every groups are finite. The prime graph of a group G is denoted by $\Gamma(G)$. Also G is called recognizable by prime graph if for every finite group H with $\Gamma(H) = \Gamma(G)$, we conclude that $G \cong H$. Until now, it is proved that if k is an odd number and p is an odd prime number, then $\text{PGL}(2,p^k)$ is recognizable by prime graph. So if k is even, the recognition by prime graph of $\text{PGL}(2,p^k)$, where p is an odd prime number, is an open problem. In this paper, we generalize this result and we prove that the almost simple group $\text{PGL}(2,25)$ is recognizable by prime graph.

© 2016 IAUCTB. All rights reserved.

Keywords: Linear group, almost simple group, prime graph, element order, Frobenius group.

2010 AMS Subject Classification: 20D05, 20D60, 20D08.

1. Introduction

Let \mathbb{N} denotes the set of natural numbers. If $n \in \mathbb{N}$, then we denote by $\pi(n)$, the set of all prime divisors of n. Let G be a finite group. The set $\pi(|G|)$ is denoted by $\pi(G)$. Also the set of element orders of G is denoted by $\pi_e(G)$. We denote by $\mu(S)$, the maximal numbers of $\pi_e(G)$ under the divisibility relation. The prime graph of G is a graph whose vertex set is $\pi(G)$ and two distinct primes p and q are joined by an edge (and we write $p \sim q$), whenever G contains an element of order pq. The prime graph of G is denoted by $\Gamma(G)$. A finite group G is called recognizable by prime graph if for every finite group H such that $\Gamma(H) = \Gamma(G)$, then we have $G \cong H$.

*Corresponding author. E-mail address: alimahmoudifar@gmail.com (A. Mahmoudifar).
In [10], it is proved that if \(p \) is a prime number which is not a Mersenne or Fermat prime and \(p \neq 11, 19 \) and \(\Gamma(G) = \Gamma(\text{PGL}(2, p)) \), then \(G \) has a unique nonabelian composition factor which is isomorphic to \(\text{PSL}(2, p) \) and if \(p = 13 \), then \(G \) has a unique nonabelian composition factor which is isomorphic to \(\text{PSL}(2, 13) \) or \(\text{PSL}(2, 27) \). In [3], it is proved that if \(q = p^\alpha \), where \(p \) is a prime and \(\alpha > 1 \), then \(\text{PGL}(2, q) \) is uniquely determined by its element orders. Also in [1], it is proved that if \(q = p^\alpha \), where \(p \) is an odd prime and \(\alpha \) is an odd natural number, then \(\text{PGL}(2, q) \) is uniquely determined by its prime graph. In this paper as the main result we consider the recognition by prime graph of almost simple group \(\text{PGL}(2, 25) \).

2. Preliminary Results

Lemma 2.1 ([8]) Let \(G \) be a finite group and \(|\pi(G)| \geq 3 \). If there exist prime numbers \(r, s, t \in \pi(G) \), such that \(\{tr, ts, rs\} \cap \pi_e(G) = \emptyset \), then \(G \) is non-solvable.

Lemma 2.2 (see [20]) Let \(G \) be a Frobenius group with kernel \(F \) and complement \(C \). Then every subgroup of \(C \) of order \(pq \), with \(p, q \) (not necessarily distinct) primes, is cyclic. In particular, every Sylow subgroup of \(C \) of odd order is cyclic and a Sylow 2-subgroup of \(C \) is either cyclic or generalized quaternion group. If \(C \) is a non-solvable group, then \(C \) has a subgroup of index at most 2 isomorphic to \(SL(2, 5) \times M \), where \(M \) has cyclic Sylow \(p \)-subgroups and \(|M|, 30| = 1 \).

Using [14, Theorem A], we have the following result:

Lemma 2.3 Let \(G \) be a finite group with \(t(G) \geq 2 \). Then one of the following holds:

(a) \(G \) is a Frobenius or 2-Frobenius group;

(b) there exists a nonabelian simple group \(S \) such that \(S \leq \overline{G} := G/N \leq \text{Aut}(S) \) for some nilpotent normal subgroup \(N \) of \(G \).

Lemma 2.4 ([21]) Let \(G = L^e_n(q) \), \(q = p^m \), be a simple group which acts absolutely irreducibly on a vector space \(W \) over a field of characteristic \(p \). Denote \(H = W \rtimes G \). If \(n = 2 \) and \(q \) is odd then \(2p \in \pi_e(H) \).

3. Main Results

Theorem 3.1 The almost simple group \(\text{PGL}(2, 25) \) is recognizable by prime graph.

Proof. Throughout this proof, we suppose that \(G \) is a finite group such that \(\Gamma(G) = \Gamma(\text{PGL}(2, 25)) \).

First of all, we remark that by [19, Lemma 7], we have \(\mu(\text{PGL}(2, 25)) = \{5, 24, 26\} \). Therefore, the prime graph of \(\text{PGL}(2, 25) \) has two connected components which are \(\{5\} \) and \(\pi(5^4 - 1) \). Also we conclude that the subsets \(\{2, 5\} \) and \(\{3, 5, 13\} \) are two independent subsets of \(\Gamma(G) \). In the sequel, we prove that \(G \) is neither a Frobenius nor a 2-Frobenius group.

Let \(G = K : C \) be a Frobenius group with kernel \(K \) and complement \(C \). By Lemma 2.2, we know that \(K \) is nilpotent and \(\pi(C) \) is a connected component of the prime graph of \(G \). Hence we conclude that \(\pi(K) = \{5\} \) and \(\pi(C) = \{2, 3, 13\} \), since 5 is an isolated vertex in \(\Gamma(G) \).

If \(C \) is non-solvable, then by Lemma 2.2, \(C \) consists a subgroup isomorphic to \(SL(2, 5) \). This implies that \(5 \in \pi(\text{SL}(2, 5)) \subseteq \pi(C) \), which is a contradiction since \(\pi(C) = \{2, 3, 13\} \). Therefore, \(C \) is solvable and so it contains a \(\{3, 13\} \)-Hall subgroup,
say \(H \). Since \(K \) is a normal subgroup of \(G \), \(KH \) is a subgroup of \(G \). Also we have \(\pi(KH) = \{3, 5, 13\} \). Thus \(KH \) is a subgroup of odd order and so it is a solvable subgroup of \(G \). On the other hand, in the prime graph of \(G \), the subset \{3, 5, 13\} is independent. Hence \(KH \) is a solvable subgroup of \(G \) such that its prime graph contains no edge, which contradicts to Lemma 2.1. Therefore, we get that \(G \) is a Frobenius group.

Let \(G \) be a 2-Frobenius group with the normal series \(1 < H < K < G \), where \(K \) is a Frobenius group with kernel \(H \) and \(G/H \) is a Frobenius group with kernel \(K/H \). We know that \(G \) is a solvable group. This implies that \(G \) contains a \{3, 5, 13\}-Hall subgroup, say \(T \). Again similar to the previous discussion, we get a contradiction.

By the above argument, the finite group \(G \) is neither Frobenius nor 2-Frobenius. So by Lemma 2.3, we conclude that there exists a nonabelian simple group \(S \) such that:

\[
S \leq \overline{G} := \frac{G}{K} \leq \text{Aut}(S)
\]

in which \(K \) is the Fitting subgroup of \(G \). We know that \(\pi(S) \subseteq \pi(G) \). Since \(\pi(G) = \{2, 3, 5, 13\} \), so by [13, Table 8], we get that \(S \) is isomorphic to one of the simple group \(A_5, A_6, \text{PSU}_3(2), \text{PSU}_4(2), \text{PSL}_3(3), S_4(5), \) or \(\text{PSL}_2(25) \). Now we consider each possibility for the simple group \(S \), step by step.

Step 1. Let \(S \) be isomorphic to the alternating group \(A_5 \) or \(A_6 \). Since \(\pi(S) \cup \pi(\text{Out}(S)) = \{2, 3, 5\} \), we conclude that \(13 \in \pi(K) \). We know that the alternating groups \(A_5 \) and \(A_6 \) consist a Frobenius subgroup \(2^2 : 3 \). Hence since \(13 \in \pi(K) \), by [17, Lemma 3.1], we deduce that \(13 \sim 3 \), which is a contradiction.

Step 2. Let \(S \) be isomorphic to the simple group \(\text{PSU}_4(2) \). By [5], the finite group \(S \) contains a Frobenius group \(2^2 : 3 \), so similar to the above argument we get a contradiction.

Step 3. Let \(S \) be isomorphic to the simple group \(\text{PSU}_3(4) \). Again by [4], in the prime graph of the simple group \(S \), \(5 \) is not an isolated vertex.

Step 4. Let \(S \) be isomorphic to the simple group \(\text{PSL}_3(3) \). Since \(\pi(\text{PSL}_3(3)) = \{2, 3, 13\} \), we get that \(5 \in \pi(K) \). On the other hand Sylow 3-subgroups of \(\text{PSL}_3(3) \) are not cyclic. Hence \(5 \notin \pi(K) \), since \(5 \) and \(3 \) are nonadjacent in \(\Gamma(G) \).

Step 5. Let \(S \) be isomorphic to the simple group \(S_4(5) \). Again by [4], in the prime graph of the simple group \(S \), \(5 \) is not an isolated vertex.

Step 4. Let \(S \) be isomorphic to \(\text{PSL}_2(25) \). Hence \(\text{PSL}_2(25) \leq \overline{G} \leq \text{Aut}(\text{PSL}_2(25)) \).

Let \(\pi(K) \) contains a prime \(r \) such that \(r \neq 5 \). Since \(K \) is a vector space over a field with \(r \) elements. Hence the prime graph of the semidirect product \(K \rtimes \text{PSL}_2(25) \) is a subgraph of \(\Gamma(G) \). Let \(B \) be a Sylow 5-subgroup of \(\text{PSL}_2(25) \). We know that \(B \) is not cyclic. On the other hand \(K \rtimes B \) is a Frobenius group such that \(\pi(K \times B) = \{r, 5\} \). Hence \(B \) should be cyclic which is a contradiction.

Let \(\pi(K) = \{5\} \). In this case, by Lemma 2.4, we get that there is an edge between \(2 \) and \(5 \) in the prime graph of \(G \) which is a contradiction. Therefore, by the above discussion, we deduce that \(K = 1 \). Also this implies that \(\text{PSL}_2(25) \leq G \leq \text{Aut}(\text{PSL}_2(25)) \).

We know that \(\text{Aut}(\text{PSL}_2(25)) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \). Since in the prime graph of \(\text{PSL}_2(25) \) there is not any edge between \(13 \) and \(2 \), we get that \(G \neq \text{PSL}_2(25) \). Also if \(G = \text{PSL}_2(25) : \langle \theta \rangle \) where \(\theta \) is a field automorphism, then we get that \(2 \) and \(5 \) are adjacent in \(G \), which is a contradiction. If \(G = \text{PSL}_2(25) : \langle \gamma \rangle \), where \(\gamma \) is a diagonal-field automorphism, then we get that \(G \) does not contain any element with order \(2 \cdot 13 \) (see [3, Lemm 12]), which is contradiction, since in \(\Gamma(G) \), \(2 \sim 13 \). This argument shows that \(G \cong \text{PGL}_2(25) \), which completes the proof.

\[\blacksquare\]
References

[17] A. Mahmoudifar, On finite groups with the same prime graph as the projective general linear group PGL(2, 81), (to appear).