Investigation into the regioisomeric composition of some fused tetrazoles

Paria Nasehi, Omid Baravaye, Sanaz Hafezi Birgani and Mohsen Nikpour*

Department of Chemistry, School of Sciences, Islamic Azad University, Ahvaz Branch, Ahvaz, 6134968875, Iran. E-mail nikpour@iauahvaz.ac.ir

Abstract - Treatment of 7-chloro-1-phenylpyrimido[4,5-e][1,3,4]thiadiazines with hydrazine in boiling ethanol gave corresponding 7-hydrazinyl derivatives. Diazotization of the latter compounds achieved a mixture of 5H-tetrazolo[1′,5′:1,2]pyrimido[4,5-e][1,3,4]thiadiazine and 9H-tetrazolo[5′,1′:2,3]pyrimido[4,5-e][1,3,4]thiadiazines. Ratio of these two group of products determined by 1HNMR studies and no significant preference was observed for their formation. Efforts for separation of the products were unsuccessful and its reason is discussed.

Keywords: 7-chloro-1-phenylpyrimido[4,5-e][1,3,4]thiadiazines, 7-hydrazinyl-1-phenylpyrimido[4,5-e][1,3,4]thiadiazin, 5H-tetrazolo[1′,5′:1,2]pyrimido[4,5-e][1,3,4]thiadiazine, 9H-tetrazolo[5′,1′:2,3]pyrimido[4,5-e][1,3,4]thiadiazine, 1HNMR study, diazotization, tetrazole-azide tautomerism.

Introduction

The growing pharmaceutical and agrochemical interests for fused pyrimidines has focused the attention of organic chemists to search for efficient and general routes to these molecules in synthetically useful yields. Fused N,S containing pyrimidines are a class of fused heterocycles which have been described as being antiviral [1-7], antifungal [8], nucleoside analogues [9], agrochemicals [10] and enzyme inhibitors [11-13] agents. These reports and pursuing of our research on synthesis of privilege compounds [12-15], are strong motives for us to prepare a novel group of this class of heterocycles in the present study.

Results and discussion

The current study presents the synthesis of tetrazolo[1′,5′:1,2]pyrimido[4,5-e][1,3,4]thiadiazines 4a-h. This synthesis is based on the diazotization of 7-hydrazinyl-1-phenylpyrimido[4,5-e][1,3,4]thiadiazines 2a-h in aqueous media, which are prepared by replacement of 7-chlorine atom of 7-chloro-1-phenylpyrimido[4,5-e][1,3,4]thiadiazines 1a-h with hydrazine in boiling ethanol (Scheme 1).
The structural assignments of the synthetic compounds were based upon the spectral and microanalytical data.

IR spectra of 7-hydrazinyl-1-phenylpyrimido[4,5-e][1,3,4]thiadiazines2a-h was devoid of the stretching vibration band at 800-1000 cm⁻¹ due to C-Cl functionality of 1a-h, but showed some vibrational bands at 3450 & 3300 cm⁻¹ belonging to their NHNH₂ moieties. Further proof came from the ¹H NMR spectra, which showed the appearance of two broad signals in δ 6 ppm and 4.2 ppm belonging to NH and NH₂ moiety of compounds 2a-h respectively. These results and also lacking of isotopic pattern of chlorine atom in the mass spectra of compounds 2a-h strongly verified their structure assignment.

In a previous communication, heterocyclization of 7-hydrazinyl-5-methyl-1-phenyl-3-phenyldiazenyl-1H-pyrimido [4,5-e][1,3,4]thiadiazine 2f with orthoesters was studied by NOE technique and it showed that 1H-[1,2,4]triazolo[4',3':1,2]pyrimido[4,5-e][1,3,4]thiadiazines have been formed as sole product [16] (Scheme 2).
The aforementioned spectral data is the major evidence for the formation of tetrazolo[1',5':1,2]pyrimido[4,5-e][1,3,4]thiadiazines 4a-h in comparison with tetrazolo[5',1':2,3]pyrimido[4,5-e][1,3,4]thiadiazines 5a-h. IR spectra of the product of diazotization of compounds 2a-h did not show neither vibrational bands at 3450 & 3300 cm\(^{-1}\) belonging to their NHNH\(_2\) moieties of precursors nor vibrational band at around 2000 cm\(^{-1}\) due to azide group of reactive intermediates 3a-h. \(^1\)HNMR spectra of these compounds did not show two broad signals in \(\delta\) 6 ppm and 4.2 ppm belonging to NH and NH\(_2\) moiety of compounds 2a-h but exhibit two assignable signals for the pyrimidine adjacent CH\(_2\) or CH\(_3\) group of products 4a-h and 5a-h. For example, diazotization of 7-hydrazinyl-5-methyl-3-(methylsulfanyl)-1-phenyl-1H-pyrimido[4,5-e][1,3,4]thiadiazine 2a in water, afforded a yellow powder, which was divided to two different fractions from the precursor in TLC. \(^1\)HNMR of this mixture exhibited three signals in aliphatic range in \(\delta\) 2.32, 2.55 and 2.88 ppm with the ratio 40, 100 and 60 respectively, which are easily assignable to pyrimidine adjacent methyl of product 5a, SCH\(_3\) of both products and pyrimidine adjacent methyl of product 4a respectively as shown in supplementaty document. Due to anisotropic effect of tetrazole ring the chemical shift of 4a pyrimidine-methyl group is deshielded compared to that in 5a. We found that the ratio of structures varied in the different cases and no preference was observed. Surprising results were found in the separation of these isomers. Since the heterocyclic structure of 5 is more polar than its isomer 4, the separation of them by a suitable preparative TLC is possible. We also observed that these two products of each cases separated in a silicagel plate with chloroform-methanole (95/5), but each fraction exhibited a \(^1\)HNMR spectrum similar to the nonseparated mixture’s spectrum and showed two fractions in its TLC. These findings and the existance of well known tautomerism between tetrazole and azido forms in a lot of tetrazoles, are leading us to suggest the rapid equilibrium of each forms 4&5 with the azide form 3 as shown in Scheme 3 as a reasonable mechanism for explanation these observations.
Experimental

The melting points were recorded on an Electrothermal type 9100 melting point apparatus. The IR spectra were obtained on a 4300 Shimadzu Spectrometer. The 1HNMR (100 MHz) spectra were recorded on a Bruker AC 100 spectrometer. The mass spectra were scanned on a Varian Mat CH-7 instrument at 70 eV. Elemental analysis was obtained on a Thermo Finnigan Flash EA microanalyzer. Precursors 2a-f&1g,h were prepared according to the previous published reports [16-18].

General procedure for the preparation of compounds 2g,h

A solution of either 7-chloro-1-phenyl-3-phenyldiazenyl-5-propyl-1H-pyrimido[4,5-e][1,3,4]thiadiazine (0.408 gr, 1mmol) or 7-chloro-1,5-diphenyl-3-phenyldiazenyl-1H-pyrimido[4,5-e] [1,3,4]thiadiazine (0.442 gr, 1mmol) in ethanol (20 ml) was heated under reflux to boiling and then hydrazine hydrate (2ml) was added. Heating was continued for 3hr with vigorous stirring. The reaction mixture was filtered after cooling to room temperature and recrystallized from ethanol to achieve compounds 2g,h.

7-Hydrazinyl-1-phenyl-3-phenyldiazenyl-5-propyl-1H-pyrimido[4,5-e][1,3,4]thiadiazine 2g

This compound was obtained as a blue powder in 85% yield, mp265-266°C (dec); IR (KBr disk): v, 1750 cm$^{-1}$, 2930 cm$^{-1}$; 1HNMR: (CDCl$_3$) δ, 1.10 (t, 3H, CH$_3$), 1.72 (sextet, 2H, CH$_2$), 2.61 (t, 2H, 5-CH$_2$), 4.2 (br, 2H, NH$_2$), 6 (br, 1H, NH), 7.5-8 (m, 10H); m/z, 404. Anal. Calcd. for C$_{20}$H$_{20}$N$_8$S: C, 59.39; H, 4.98; N, 27.70; S, 7.93. Found: C, 59.16; H, 5.12; N, 27.42; S, 7.71.

7-Hydrazinyl-1,5-diphenyl-3-phenyldiazenyl-1H-pyrimido[4,5-e][1,3,4]thiadiazine 2h

Scheme 3: Mechanism of mutual conversion of isomers 4 and 5
This compound was obtained as a blue powder in 90% yield, mp 300-302 °C (dec); IR (KBr disk): ν, 1770 cm⁻¹; ¹H NMR: (CDCl₃) δ, 4.2 (br, 2H, NH₂), 6.2 (br, 1H, NH). 7.5-8.3 (m, 15H, aromatic); m/z, 438. Anal. Calcd. for C₂₃H₁₈N₈S: C, 63.00; H, 4.14; N, 25.55; S, 7.31. Found: C, 63.25; H, 4.32; N, 25.31; S, 6.98.

General procedure for diazotization of compounds 7-hydrazinyl-1-phenylpyrimido[4,5-e][1,3,4]thiadiazines 2a-h

A solution of either compounds 2a-h (1mmol) in conc. hydrochloric acid (5ml) was diluted by water (5ml) and cooled in an ice bath. A cooled solution of sodium nitrit (0.4 gr) in water (5ml) was dropwisely added to the previous solution and stirred for 2hr in ice bath. The reaction mixture was neutralized by sodium hydroxide solution and filtered. The precipitant washed by hot ethanole and dried in 80 °C to obtaine compounds 4a-h and 5a-h.

9-Methyl-7-(methylsulfanyl)-5-phenyl-5H-tetrazolo[1',5':1,2]pyrimido[4,5-e][1,3,4]thiadiazine (4a)

This compound was obtained as a yellow powder in 70% combined yield, mp170 177 °C, IR (KBr disk): ν, 1560 cm⁻¹, 2900 cm⁻¹, 2940 cm⁻¹; ¹H NMR: (CDCl₃) δ, 2.55 (s, 3H, S-CH₃), 2.88 (s, 0.6 x 3H, 9-CH₃), 7.2-7.6 (multiplet,5H); m/z, 329.

5-Methyl-7-(methylsulfanyl)-9-phenyl-9H-tetrazolo[5',1':2,3]pyrimido[4,5-e][1,3,4]thiadiazine (5a)

This compound was obtained as a yellow powder in 70% combined yield, mp170 177 °C, IR (KBr disk): ν, 1560 cm⁻¹, 2900 cm⁻¹, 2940 cm⁻¹; ¹H NMR: (CDCl₃) δ, 2.32 (s, 0.4 x 3H, 5-CH₃), 2.55 (s, 3H, S-CH₃), 7.2-7.6 (multiplet,5H); m/z, 329.

7-(Ethylsulfanyl)-9-methyl-5-phenyl-5H-tetrazolo [1',5':1,2]pyrimido[4,5-e][1,3,4]thiadiazine (4b)

This compound was obtained as a yellow powder in 60% combined yield, mp116-121°C, IR (KBr disk): ν, 1600 cm⁻¹, 2900 cm⁻¹, 2950 cm⁻¹; ¹H NMR: (CDCl₃) δ, 1.38 (t, 3H, CH₃), 2.90 (s, 0.5 x 3H, 9-CH₃), 3.12 (q, 2H,S-CH₂), 7.2-7.6 (multiplet, 5H); m/z, 343.

7-(Ethylsulfanyl)-5-methyl-9-phenyl-9H-tetrazolo [5',1':2,3]pyrimido[4,5-e][1,3,4]thiadiazine (5b)

This compound was obtained as a yellow powder in 60% combined yield, mp116-121°C, IR (KBr disk): ν, 1600 cm⁻¹, 2900 cm⁻¹, 2950 cm⁻¹; ¹H NMR: (CDCl₃) δ, 1.38 (t, 3H, CH₃), 2.35 (s, 0.5 x 3H, 5-CH₃), 3.12 (q, 2H,S-CH₂), 7.2-7.6 (multiplet, 5H); m/z, 343.

9-Methyl-5-phenyl-7-(propylsulfanyl)-5H-tetrazolo[1',5':1,2]pyrimido[4,5-][1,3,4]thiadiazine (4c)
This compound was obtained as a yellow powder in 80% combined yield, mp95-102 °C, IR (KBr disk): v, 1650 cm⁻¹, 2900 cm⁻¹, 2950 cm⁻¹; HNMR:(CDCl₃) δ, 1.10 (t, 3H, CH₃), 1.72 (sextet, 2H,CH₂), 2.90 (s, 0.6 x 3H, 9-CH₃), 3.09 (t, 2H,S-CH₂), 7.2-7.6 (multiplet, 5H), m/z, 357.

5-Methyl-9-phenyl-7-(propylsulfanyl)-9H-tetrazolo[5',1':2,3]pyrimido[4,5-]1,3,4 thiadiazine (5c)

This compound was obtained as a yellow powder in 80% combined yield, mp95-102 °C, IR (KBr disk): v, 1650 cm⁻¹, 2900 cm⁻¹, 2950 cm⁻¹; HNMR:(CDCl₃) δ, 1.10 (t, 3H, CH₃), 1.72 (sextet, 2H,CH₂), 2.90 (s, 0.6 x 3H, 9-CH₃), 3.09 (t, 2H,S-CH₂), 7.2-7.6 (multiplet, 5H), m/z, 357.

7-(Butylsulfanyl)-9-methyl-5-phenyl-5H-tetrazolo[1',5':1,2]pyrimido[4,5-e][1,3,4] thiadiazine (4d)

This compound was obtained as a yellow powder in 70% combined yield, mp70-78°C, IR (KBr disk): v, 1600 cm⁻¹, 2900 cm⁻¹, 2960 cm⁻¹; ¹HNMR:(CDCl₃) δ, 0.97 (t, 3H,CH₃), 1.33-1.85 (multiplet, 4H, 2CH₂), 2.90 (s, 0.4 x 3H, 9-CH₃), 3.12 (t, 2H,S-CH₂), 7.2-7.6 (multiplet, 5H) m/z, 371.

7-(Butylsulfanyl)-5-methyl-9-phenyl-9H-tetrazolo[5',1':2,3]pyrimido[4,5-e][1,3,4] thiadiazine (5d)

This compound was obtained as a yellow powder in 70% combined yield, mp70-78°C, IR (KBr disk): v, 1600 cm⁻¹, 2900 cm⁻¹, 2960 cm⁻¹; ¹HNMR:(CDCl₃) δ, 0.97 (t, 3H,CH₃), 1.33-1.85 (multiplet, 4H, 2CH₂), 2.36 (s, 0.6 x 3H, 5-CH₃), 3.12 (t, 2H,S-CH₂), 7.2-7.6 (multiplet, 5H) m/z, 371.

7-(Benzylsulfanyl)-9-methyl-5-phenyl-5H-tetrazolo[1',5':1,2]pyrimido[4,5-]1,3,4 thiadiazine (4e)

This compound was obtained as a yellow powder in 90% combined yield, mp131-138°C, IR (KBr disk): v, 1550 cm⁻¹, 2900 cm⁻¹, 2940 cm⁻¹; ¹HNMR: (CDCl₃) δ, 2.89 (s, 0.3 x 3H, 9-CH₃), 4.31 (s, 2H,S-CH₂), 7.2-7.5 (multiplet, 10H); m/z, 405.

7-(Benzylsulfanyl)-5-methyl-9-phenyl-9H-tetrazolo[5',1':2,3]pyrimido[4,5-][1,3,4] thiadiazine (5e)

This compound was obtained as a yellow powder in 90% combined yield, mp131-138°C, IR (KBr disk): v, 1550 cm⁻¹, 2900 cm⁻¹, 2940 cm⁻¹; ¹HNMR: (CDCl₃) δ, 2.36 (s, 0.7 x 3H, 5-CH₃), 4.31 (s, 2H,S-CH₂), 7.2-7.5 (multiplet, 10H); m/z, 405.
9-Methyl-5-phenyl-7-phenyldiazenyl-5H-tetrazolo[1',5':1,2]pyrimido[4,5-e][1,3,4]thiadiazine (4f)
This compound was obtained as a blue powder in 90% combined yield, mp 280-287°C (dec);
IR (KBr disk): v, 1700 cm⁻¹, 2950 cm⁻¹, 2940 cm⁻¹; ¹H NMR: (CDCl₃) δ, 2.90 (s, 0.5 x 3H, 9-CH₃), 7.2-8 (multiplet, 10H); m/z, 387.

5-Methyl-9-phenyl-7-phenyldiazenyl-9H-tetrazolo[5',1':2,3]pyrimido[4,5-e][1,3,4]thiadiazine (5f)
This compound was obtained as a blue powder in 90% combined yield, mp 280-287°C (dec);
IR (KBr disk): v, 1700 cm⁻¹, 2950 cm⁻¹, 2940 cm⁻¹; ¹H NMR: (CDCl₃) δ, 2.35 (s, 0.5 x 3H, 8-CH₃), 7.2-8 (multiplet, 10H); m/z, 387.

5-Phenyl-7-phenyldiazenyl-9-propyl-5H-tetrazolo[1',5':1,2]pyrimido[4,5-e][1,3,4]thiadiazine (4g)
This compound was obtained as a blue powder in combined 85% yield, mp 263-273°C (dec);
IR (KBr disk): v, 1750 cm⁻¹, 2930 cm⁻¹; ¹H NMR: (CDCl₃) δ, 1.15 (t, 3H, CH₃), 1.77 (sextet, 2H, CH₂), 3.21 (t, 0.6 x 2H, 9-CH₂), 7.5-8 (m, 10H); m/z, 415.

9-Phenyl-7-phenyldiazenyl-5-propyl-9H-tetrazolo [5',1':2,3]pyrimido[4,5-e][1,3,4]thiadiazine (5g)
This compound was obtained as a blue powder in combined 85% yield, mp 263-273°C (dec);
IR (KBr disk): v, 1750 cm⁻¹, 2930 cm⁻¹; ¹H NMR: (CDCl₃) δ, 1.15 (t, 3H, CH₃), 1.77 (sextet, 2H, CH₂), 2.58 (t, 0.4 x 2H, 5-CH₂), 7.5-8 (m, 10H); m/z, 415.

5,9-Diphenyl-7-phenyldiazenyl-5H-tetrazolo [1',5':1,2]pyrimido[4,5-e][1,3,4]thiadiazine (4h)
This compound was obtained as a magenta powder in 92% combined yield, mp 290-297°C (dec); IR (KBr disk): v, 1770 cm⁻¹; ¹H NMR: (CDCl₃) δ, 7.5-8.3 (m, aromatic); m/z, 449.

5,9-Diphenyl-7-phenyldiazenyl-9H-tetrazolo [5',1':2,3]pyrimido[4,5-e][1,3,4]thiadiazine (5h)
This compound was obtained as a magenta powder in 92% combined yield, mp 290-297°C (dec); IR (KBr disk): v, 1770 cm⁻¹; ¹H NMR: (CDCl₃) δ, 7.5-8.3 (m, aromatic); m/z, 449.

Conclusion
In conclusion diazotization of compounds 7-hydrazinylpyrimido[4,5-e][1,3,4]thiadiazines afforded two groups of 5H-tetrazolo [1',5':1,2]pyrimido[4,5-e][1,3,4] thiazidines and 9H-tetrazolo [5',1':2,3]pyrimido[4,5-e] [1,3,4]thiazidines with no significant preference.
Acknowledgments

The financial support of this research by Ahvaz Branch, Islamic Azad University is gratefully acknowledged.

References