بررسی تأثیر دوره‌های ا شباع و خشک‌شدنگی بر خاک مدفن زباله شهری (مطالعه موردی ناحیه کهریزک تهران)

ناصر عبادتی، محمد درستکار ساری

1- دانشگاه آزاد اسلامی واحد اسلامشهر
2- کارشناس ارشد خاک و پی. شهرداری تهران

چکیده
کنترل و دفع مناسب زباله‌کیفی از مشکلات عمده‌ای است که در دنیای زیست‌محیطی به شمار می‌رود. ناکونن کنار روش‌های زیست‌محیطی و دفن در دنیا می‌تواند تعیییه این اشکال را در حال حاضر به عنوان یک راه حل عملی شناخته شده‌است. می‌تواند مداخله زیست‌محیطی را در کوتاه و دراز مدت آن‌ها تناسب و مهم‌ترین مسائل استفاده ظریف است که از ورد شیرامی به میزان زیست گل‌گیری و یا آن را کنترل نماید. در این تحقیق کاهش تفویضی برای آب بند می‌تواند زباله شهری مورد بررسی قرار گرفته است. این میزان بر اساس دو ویژگی اصلی یعنی ترک‌پذیری و ویژگی‌های خودترمیسی بیشتر به عنوان کارایی تکرار این خاک با ها به لحاظ کاهش تفویضی برای حفظ تفویضی می‌باشد. این باید با توجه به عدم صورت از خاک های منطقه دفن زباله در ناحیه کهریزک تهران نمونه برداری و کارهای آزمایشگاهی براساس استاندارد ASTM انجام گرفته است و در انتها با نتایج به مقادیر متوسط کاهش تفاوتی گردید. مقادیر تفویضی در استاندارد تاکنون به‌طور کامل در پیش‌آمده نمایه نشده است. این نتایج به عنوان نمونه بررسی کارایی برای خاک به لحاظ کاربرد در لایه‌های تفویضی در نظر گرفته شده است براساس مطالعات و هر چه میزان تفویضی نسبی بسیار ندارد که نیازی به یک نرم‌افزار باشد خاک مربوط به کاهش در طراحی مدفن مهندسی زباله مناسب تر می‌باشد.

واژگان کلیدی: تفویضی نسبی، خودترمیسی، ترک‌پذیری، خشک‌شدنگی
مقدمه

tایر تاریخچه شکل شدگی - مرطوب شدگی خاک در ایران با گسترش شهرنشینی و صنعتی شدن و دفن غیر اصولی زباله‌های شهری و صنعتی، پتانسیل آلودگی خاک‌ها و آب زیرزمینی در سطح گسترده‌ای وجود دارد. شاخص روش‌های رفع آلودگی خاک‌ها و بررسی امکان استفاده و کارایی این روش‌ها، بینشی نسبت به دورنما و وضعیت خاک و آب زیرزمینی آلوده و امکان پیشگیری محیط به مهندسین زمین‌شناسی زیست محیطی خواهد داد.

چرکوف (2002)، بیسان داشت، ترک خودشگی مکانیکی به صورت شکل‌های برخی ناشی از نشست در پوسته کف و پوسته بالایی می‌باشد. این نوع سیستم شایع آب‌دریافتی جهت جیران‌آب‌های زیرزمینی و یا جلوگیری از تفویض شیرابه به خاک اطراف می‌شود. شکل (1).

[1] هالف و نلسون (1999). ایجاد ترک در اثر خشک شدن‌ها یا یک‌پایی از پزيک‌های معمول در خاک‌های رسی به شمار آورد. در نتیجه این فرآیند، دیگر نمی‌توان خواص هیدروژن‌های خاک را ثابت فرض کرد به طوری که تفویض‌های آن تحت

برای بدست آوردن پارامترهای خواص خاک‌ها از آزمایش‌های ASTM D4318 بررسی‌های استاندارد اترپرگ مقادیر حدرواتی و شاخص PL و شاخص PLPI آنها محاسبه و این نتایج آمده‌اند. در پی جدیدترین پیش‌بینی‌های شاخص‌های برسی شده به‌طور گسترده‌تر نتایج پیش‌بینی PLPI/LL < 1/81 حدرواتی/4 PLPI < 1/8/4 حدرواتی/4 < PLPI نشان گرفته شد که این نتایج بهتر هستند.

جدول 1- نتایج آزمایش‌های فیزیکی بر روی نمونه‌های خاک که به‌روز

<table>
<thead>
<tr>
<th>همتای</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبقه پنده</td>
<td>USCS</td>
<td>USCS</td>
<td>USCS</td>
<td>USCS</td>
<td>USCS</td>
<td>USCS</td>
</tr>
<tr>
<td>حدرواتی</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
</tr>
<tr>
<td>حدرواتی</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
</tr>
<tr>
<td>شاخص‌های خاک‌های US</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
</tr>
<tr>
<td>درصد رس</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>فعالیت</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>فعالیت</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>درصد عبور از الک</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
</tbody>
</table>

در شکل (3) موقعیت نمونه‌های مورد بررسی در منحنی کاسکارانه جانمانی شده و نشان‌دهنده نوع خاک می‌باشد. خاک‌های تحت آزمایش تراکم پس از شکن شدن در معرض هوا قرار گرفته و سپس کاملاً خروشده‌اند. تا جهت انجام آزمایش تراکم استاندارد براساس ASTM D698 مورد استفاده قرار گیرند. مقدار بدست آمده در
ترکیب خورش‌های خشک شدگی و اشباع بر خاک مهار زباله شهری (مطالعه موردی ناحیه کهریزک تهران)

جدول ۲ - نتایج آزمایش تراکم

<table>
<thead>
<tr>
<th>نمونه خاک</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_dmax</td>
<td>۱/۷۸</td>
<td>۱/۷۹</td>
<td>۱/۷۹</td>
<td>۱/۷۸</td>
<td>۱/۷۹</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>ωopt</td>
<td>۱/۸۰</td>
<td>۱/۸۰</td>
<td>۱/۸۹</td>
<td>۱/۸۴</td>
<td>۱/۸۹</td>
<td>۱/۸۴</td>
</tr>
<tr>
<td>Gs</td>
<td>۱/۷۹</td>
<td>۱/۷۷</td>
<td>۱/۷۷</td>
<td>۱/۷۷</td>
<td>۱/۷۷</td>
<td>۱/۷۷</td>
</tr>
</tbody>
</table>

برای تعیین میزان ترکیب شیمیایی به‌خصوص آهک در نمونه خاک‌های مورد آزمایش بر اساس آهن‌نامه استاندارد ۱۱۹۵ ایران آزمایش‌های انجام و نتایج مربوط به میزان آهک در جدول ۳ ارائه شده است. پایدار توجه داشته که بیشتر خاک‌های رسی، قلیایی هستند و وجود نمک‌ها و ناخالصی‌ها دیگر ممکن است خاصیت اسیدی ایجاد کند.

جدول ۳ - میزان آهک موجود در نمونه‌های خاک

<table>
<thead>
<tr>
<th>نمونه خاک</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>%CaO</td>
<td>۴۰</td>
<td>۷۰</td>
<td>۵۰</td>
<td>۲۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

آزمایش‌های نفوذ‌پذیری به منظور بررسی کمی و تعیین میزان تأثیر...
بلاتی نمود. یکی از این مشکلات در تحقیقات اخیر بیان شده است.

جدول 6- مشخصات حداقل ترک حاصل از خشکشگی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>سریال</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاقد</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>بارشویی</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>عشاق منفی</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

در مورد خاک ۲ به نظر می‌رسد همان‌طور که نتایج آزمایش‌های شیمیایی نشان می‌دهد علت ترک‌های ناچیز نمود. خاک ۲ ناشی از وجود ۷/۴ آب در ترک‌های شیمیایی آنتی‌جیر نمود و این تیپ ترک‌های بیشتر آب در کاهش ترک‌خوردرگی در دوره‌های خشک شدگی است.

تأثیر مشخصات فیزیکی خاک بر میزان ترک‌خوردرگی

بررسی یکی مشاهدات ترک‌خوردرگی

بررسی ظاهری وضعیت ترک خوردرگی این نمونه‌ها بیانگر توزیع گسترده و زیاد ترک‌ها در نمونه خاک ۶ می‌باشد. نمود ۵۴ میلی‌متر عمق نفوذ ترک در این خاک حدود ۲۲ میلی‌متر و بارش‌گی آن ۱/۱ میلی‌متر می‌باشد. میزان ترک خوردرگی نمونه خاک ۲ در مقایسه با سایر نمونه‌ها با پیام ناحیه می‌باشد. در جدول (۴) مقادیر مشخصات حاصل از نمونه‌های ترک‌خوردرگی نمونه‌ها و نتایج ترتیب‌‌گذاری

جدول ۴- نتایج ترک‌خوردرگی با اثبات در دوره‌های مختلف

<table>
<thead>
<tr>
<th>سریال</th>
<th>تعداد</th>
<th>تاریخ ترمیم</th>
<th>تاریخ نوین</th>
<th>تاریخ اولیه</th>
<th>تاریخ دوم</th>
<th>تاریخ سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
<td>۱۹۸۵/۳/۱۰</td>
<td>۱۹۸۶/۳/۱۰</td>
<td>۱۹۸۷/۳/۱۰</td>
<td>۱۹۸۸/۳/۱۰</td>
<td>۱۹۸۹/۳/۱۰</td>
</tr>
<tr>
<td>۲</td>
<td>۳</td>
<td>۱۹۸۵/۳/۱۰</td>
<td>۱۹۸۶/۳/۱۰</td>
<td>۱۹۸۷/۳/۱۰</td>
<td>۱۹۸۸/۳/۱۰</td>
<td>۱۹۸۹/۳/۱۰</td>
</tr>
<tr>
<td>۳</td>
<td>۴</td>
<td>۱۹۸۵/۳/۱۰</td>
<td>۱۹۸۶/۳/۱۰</td>
<td>۱۹۸۷/۳/۱۰</td>
<td>۱۹۸۸/۳/۱۰</td>
<td>۱۹۸۹/۳/۱۰</td>
</tr>
<tr>
<td>۴</td>
<td>۵</td>
<td>۱۹۸۵/۳/۱۰</td>
<td>۱۹۸۶/۳/۱۰</td>
<td>۱۹۸۷/۳/۱۰</td>
<td>۱۹۸۸/۳/۱۰</td>
<td>۱۹۸۹/۳/۱۰</td>
</tr>
<tr>
<td>۵</td>
<td>۶</td>
<td>۱۹۸۵/۳/۱۰</td>
<td>۱۹۸۶/۳/۱۰</td>
<td>۱۹۸۷/۳/۱۰</td>
<td>۱۹۸۸/۳/۱۰</td>
<td>۱۹۸۹/۳/۱۰</td>
</tr>
<tr>
<td>۶</td>
<td>۷</td>
<td>۱۹۸۵/۳/۱۰</td>
<td>۱۹۸۶/۳/۱۰</td>
<td>۱۹۸۷/۳/۱۰</td>
<td>۱۹۸۸/۳/۱۰</td>
<td>۱۹۸۹/۳/۱۰</td>
</tr>
</tbody>
</table>

نتایج حاصل از آزمایش‌های فیزیکی و جدول (۴)
برای شناسایی حداکثر مورد تحقیق ارائه شد. بر اساس آزمایش‌های فیزیکی و جدول (5) که بیانگر مشخصات حداکثر ترک حاصل از خشک‌شدنگی می‌باشد، شکل (4) تغییرات حد روانی شاخ با مقادیر حداکثر طول، بازشادگی و عمق ترک و شکل (7) تغییرات درصد رس شاخ با حداکثر طول، بازشادگی و عمق ترک را نشان می‌دهد.

بررسی نمونه‌ها حاکی است که خاک 6 که در ایال بیشترین مقدار حد روایی و درصد رس می‌باشد، دارای بیشترین مقدار طول، بازشادگی و عمق ترک بوده و خاک 2 که در ایال کمترین حد روایی و درصد رس است، کمترین میزان حداکثر ترک حاصل از خشک‌شدنگی را نشان می‌دهد، که با پایه‌ای دیگر محققین هم راست است (5).

table:

| شکل 9- تغییرات حد اکثر عمق ترک با درصد رس خاک | شکل 8- تغییرات حد اکثر طول ترک با درصد رس خاک | شکل 7- تغییرات حد اکثر طول ترک با درصد رس خاک |

حل نتایج آزمایش نفوذپذیری

ازمایش نفوذپذیری در سه حالت نفوذپذیری اولیه (K₁)، نفوذپذیری پس از سیکل اول خشک‌شدنگی و اشباع (K₂) و نیز نفوذپذیری در انتهای سیکل دوم خشک‌شدنگی و اشباع (K₃) انجام گرفته و مقادیر نسبت سه حالت نفوذپذیری در جدول (6) آمده است.

table:

| شکل 10- تغییرات حد اکثر عمق ترک با حد روایی خاک | شکل 11- تغییرات حد اکثر طول ترک با حد روایی خاک | شکل 12- تغییرات حد اکثر طول ترک با حد روایی خاک |

جدول 6- نتایج نفوذپذیری و نسبت های تغییرات در دوره‌ها

<table>
<thead>
<tr>
<th>تغییرات</th>
<th>نسبت ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله دوم خشک شدگی</td>
<td>Ks</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

برای نمونه‌ها

این نمونه و به تبع آن افزایش میزان نفوذپذیری این مصالح می‌باشد. میزان تغییرات نفوذپذیری نمونه‌ها مورد بررسی در مرحله دوم خشک شدگی- اشاعه نسیم ثابت و نشانگر تغییر جزئی میزان نفوذپذیری نسبت به سیکل اول بوده و بانگر تأثیر تعداد سیکل‌های خشک شدگی

و اصابت در خاک‌های مورد بررسی می‌باشد. برای تغییرات نفوذپذیری خاک‌های ریزدان مورد بررسی بر میزان و نفوذپذیری آنها و در صورت امکان ارائه شاخاصی برای ارزیابی کارآیی این خاک‌ها به لحاظ کاربرد در لیست نفوذپذیری، برخی پارامترها مثل دامنه حجمی، حد گونه، میزان معلولیت و سایر ویژگی‌های فیزیکی این خاک‌ها شناسایی شده و تأثیر آنها بر میزان نفوذپذیری نمونه‌ها شش گانه طرح مورد بررسی قرار گرفته است. لیا نفوذپذیری رسی برای اینکه کارآیی مناسب‌تر داشته باشد باید:

الف) نفوذپذیری آن قبل و بعد از ترک خوردارگی در حد مناسب باشد.

ب) این خاصیت حوزه حمصی آن باید باشد.

تاثیر شاخاسی حجمی بر نفوذپذیری

شکل (10) نتایج شاخا حجمی بر کاراکتر خاک‌های فلزی از میزان نموده می‌باشد. در خاک‌های با شاخا حجمی ۶-۱۱ نفوذپذیری خاک کمتر از دوره خشک شدگی مثابه بوده و نیز با توجه به نفوذپذیری مناسب قبل و بعد از ترک خوردارگی، خاک کاراکتر مناسب دارد.

با توجه به آزمایش‌های نفوذپذیری به دلیل باینرید و نفوذپذیری خاک قبل و بعد از ترک خوردارگی حتی با این که شدت ترک خوردارگی در آن یا نه به‌کاراکتر خاک رسی در PI کمتر از ۱۴ مناسب می‌باشد.
بررسی تأثیر دوره‌های خشک شدگی و اشباع بر خاک مدنی زیاله شهري (مطالعه موردی ناحيه کهریزک تهران)

نتیجه‌گیری

به این ترتیب می‌توان نتیجه گرفت محدوده 14 ≤ P1 با توجه به نتایج بدست آمده برای خاک‌های نفوذپذیر مناسب بوده و کارایی بهتری از خود نشان داده‌اند.

![دایره‌گردوکش](image)

شکل 10- نتایج شاخص خمیری بر مبنای نفوذپذیری

K_n / K_0

بررسی تأثیر فعالیت خاک‌های مورد بررسی

میزان نفوذپذیری

![دایره‌گردوکش](image)

شکل 11- نتایج فعالیت خاک‌های مورد بررسی بر مبنای نفوذپذیری

K_n / K_0

نتیجه‌گیری

در این تحقیق مقدار نفوذپذیری در انتهای سیکل‌های اول و دوم خشک شدگی - اشباع، به مقدار K_n و K_0 و همچنین K_n / K_0 و K_n / K_0 نمود.

متابع

1- باریار، محمد، و، صالح زاده، ح. 1374، آزمایشگاه مکانیک خاک. انتشارات دانشگاه علم و صنعت، 132 ص.
hydraulic conductivity of compacted clay liners, constructing and controlling compaction of arthills, university of wisconsin, Madison.

5- Benson, C., and Boutwell, G., 2000, Compaction condition and scale dependent