فصولنامه علمی پژوهشی زمین شناسی محيط زیست
سال ۱۴، شماره ۴، بهار ۱۳۸۹

انتشارات ژئوchemیایی مس و طلا و رسوبات آبراهی و کانی سنجین در
فیروزان نكاوند

چکیده
منطقه مورد مطالعه در شمال شرقی فیروزان نكاوند و در زون سنجد-سیرجان واقع شده است. سنگ‌های آتشنجانی کربناتی شامل داسیت، آندزیت، کوارتزآندزیت و توف بخش اعظم رخمنونه‌های سنگی منطقه را تشکیل می‌دهند. توده‌های تغذیه با جنس‌های مختلف و گرانودوریت در این منطقه نواره‌ای از کره‌های تغذیه غشایی نوعی تغذیه شیمیایی نمونه‌های رسوبات آبراهی در منطقه نشان می‌دهد. از منطقه عصارهار شیمیایی شدید مشاهده می‌شود. عمده کانی‌های سنجین یافته‌های شناسایی‌شده شامل مگنتیت، هفتمان، لیمونیت، مارنتیت، لوزیت، بیتروپت، پیتروپت، اکسیده‌شنده، گالن و دیگری است. سنگ‌های رسوبی طبیعی از مس، طلای، آزوریت، باریت، پپرونیت، اسفن، روتن، آنتان و یکسکی و میان‌کوهی هستند. در ارتباط با ناگاتنگ

واژگان کلیدی: اکتشافات ژئوchemیایی، رسوبات آبراهی، کانی سنجین، فیروزان، سنجد-سیرجان

مقدمه
منطقه مورد مطالعه بخشی از ورشته یکصد ژورئوس نجاوند است که بین طول‌های جغرافیایی ۲۷°۰۰ تا ۸۰°۰۰ خاوری و عرض‌های جغرافیایی ۴۷°۱۷ تا ۳۷°۲۷ شمالی قرار دارد. از نظر تقسیمات زمین‌شناسی و

ساختمانهای ایران این منطقه متعلق به زون سنجد-سیرجان است. سنگ‌های آتشنجانی کربناتی شامل داسیت، آندزیت، کوارتزآندزیت و توف بخش اعظم رخمنونه‌های سنگی منطقه را تشکیل می‌دهند. توده‌
روش نمونه برداری و تجزیه شیمیایی

یکی از مراحل مهم و اساسی از این اکتشافات طراحی نقاشی نمونه برداری است و از آن جای روشن‌های استفاده شده در مراحل بعدی هزینه های زیادی دارند. پس ضروری است طراحی با دقت زیاد انجام پذیرد.

[5]
اکتشافات زئوژمایی مس و طلا رسوایی آبآههای و کانی سنگین در...

چون Au و Ag با توجه به ارزش بالایی که در اکتشاف
دارند نمی‌توان به سادگی گذشته‌نا برکت‌دهی در تفسیر
باشته محتوانه می‌باشد. سپس با توجه به این که بخشی از
داده‌ها به صورت سنسور مزاجگری می‌شود بود و از آنجا که داده‌های سنسور در کار پردازش آماری اختلال
ایجاد می‌نماید اقدام به تخمین مقدار سنسور مزاجگری
داده‌های خام عناصر در مطلوبیت این‌جا به کمک Hg, Be, Te
یافته بودند. لذا از سری پردازش هدف شده، نمونه‌ها برای
تعادل عناصر و شاهد و ماپی برای تجزیه به آزمایشگاه تجزیه
و تقسیم صحنه‌های سنگین شناسی کشور ارسال شد. کلیه
نمونه‌ها به‌طور ۴۳ عنصر به روش ICP و برای طلا به
روش تجزیه گردیدند. همچنین به منظور Fire Assay کنترل
دقت تجزیه‌ها ۱۰ نمونه نکراتی از بین نمونه‌ها قرار
به صورت تصادفی انتخاب و تجزیه شد. با توجه به اینکه همکاران اطلاعاتی حاصل از دو روش اکتشاف زئوژمایی آبآههای ای و کانی سنگین
می‌تواند به دید واقعی تری از محیط اکتشافات کمک
کند ۲۸ نمونه کانی سنگین به گونه‌ای که حداقل
پوشش را در منطقه ایجاد نماید برده‌نشت گردید. نمونه‌ها به پاس از کنار دو مس رستی‌کننده از
عمق ۱۰۰ متری به پائین با کل ۲۰ مس و در حجم ۵
تا ۷ لیتر مخلوط رسوایی داده در دست برداشتند
شنبه و پس از لایی شویی به آزمایشگاه سنگین
زئوژمایی کشور ارسال شد و در آن جا پس از
مطالعات در هر یک از کانی‌های سنگین مشاهده‌شده
به صورت ppm گزارش شد.

بحث

پس از تجزیه شیمیایی نمونه‌ها ابتدا دقت تجزیه‌ها با
استفاده از روش ترقیه‌بندی [۱۳] و روش محاسباتی [۸]
مورد بررسی قرار گرفت که خطای تجزیه برای تمامی
W, Zn, S, Mo, Cr, Be, Ag, Au
عناصر به جز N
مورد تایید قرار گرفت با این حال از پردازش هم
نظرهای پی‌پردازشی هم‌افزونی ماحول زمینی، محیط زیست و سال پنج‌م، شماره ۱۴، بهار ۱۳۸۰

منطقه (تصویر ۲) سه گروه اصلی از اعضا خاک به‌شمار می‌آید: سرب و روی‌های همبستگی قوی نشان می‌دهد و در ذخایر سرب و روی یک نشانگر است و یکی از همبستگی‌های شناخته شده است. همبستگی‌ها در ارتباط نزدیکی دارند. احتمالاً این عامل در ارتباط با دستگاه‌های سرب و روی و Co, Cr, Mg, Ni مرتبط با واحدهای سنگی منطقه و خوشش سوم نهایی شامل عنصر است که مجدد عدم همبستگی این عنصر با استفاده عناصر و توزیع مستقل آن را نشان می‌دهد.

جدول ۱- نتایج ضریب همبستگی عنصر به روش پیرسون

| عنصر | Ag | As | Au | Ba | Cd | Sb | Cu | Pb | Zn | Mo | S | Sn | W | Ni | Cr | Fe | Mg |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Co | 0.63 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Sn | 0.37 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Cd | 0.36 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Sb | 0.18 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Cu | 0.22 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Pb | 0.59 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Zn | 0.48 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Mo | 0.57 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| S | 0.42 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Sn | 0.07 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| W | 0.20 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Ni | 0.09 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Cr | 0.13 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Fe | 0.56 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
| Mg | 0.68 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |

جدول ۲- مولفه‌های چندچای نتایج تحت تابع وریمکس

<table>
<thead>
<tr>
<th>عنصر</th>
<th>۱</th>
<th>۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb</td>
<td>۰.۹۸۲</td>
<td>-۰.۰۵۲</td>
</tr>
<tr>
<td>Cu</td>
<td>۰.۸۹۸</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Pb</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Fe</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Zn</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>As</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Sn</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>W</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Co</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Ni</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Cr</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Fe</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
<tr>
<td>Mg</td>
<td>۰.۸۸۹</td>
<td>۰.۱۴۶</td>
</tr>
</tbody>
</table>

درو انتقال (Varimax)
اکتشافات زئوشیماپی اس و طلا رسوبات آراوهایت و کاتی سنگین در... در ادامه مطالعه به منظور تحلیل بهتر بر روی داده‌های ترمال شد، تجزیه و تحلیل عاملی انجام گردید. در ابتدا برای مشخص نمودن صحت و تایید تجزیه عاملی، از ضریب اطمینان داترمنی (KMO) استفاده شد که با توجه به معیار مقدار مناسبی (0/79) را نشان داد.

برای تعیین تعداد عامل‌ها، درصد واریانس و درصد تجمع هر مولفه محاسبه شد و نمودار صخره‌ای مولفه‌های نیز ترسیم گردید. نتایج حاصل نشان داد که 3 عامل اول با درصد تجمع واریانس نزدیک به 80% می‌توانند معرف تقریبی کل جمعه‌ی باشند. لذا این عامل‌ها تحت تابع ورمکس دورانی تمعنادل (Varimax) مقداری چرخش یافته‌پذیرد. در هر عامل سوم عناصر S, Cd, Fe, Zn, Cu, Sb, Ba, Sn، الی‌الی بوده که احتمالا در ارتباط با کاتی سازی As در بوده ویک عامل سنگی می‌باشد. عامل دوم شامل Co، Cr، Mg، Ni، سرب و روی در منطقه‌ی می‌باشد. عامل سوم شامل آنزیم و منجیر از سنگ‌های منطقه‌ای است، عامل سوم شامل عنصر Ag، Mo، Pb، عنصر زئوشیماپی اس است. در نهایت برای تفکیک پی هنجاره‌ی زئوشیماپی مقدار میانه (X) و انحراف معیار (S) محاسبه و مقدار X+1S به عنوان زمینه، مقایسه با عناصر محدوده آستانه، X+2Sبه عنوان سنگین ممکن X+3Sبه عنوان آنومالی احتمالی و مقایسه با الی‌الی X+3S به عنوان آنومالی احتمالی طبقه‌بندی گردید [9] و در نهایت نقشه‌های تک متغیر برای 41 عنصر و 3 عامل ترسیم شد (تصویر 3)، نتایج برداشته‌ها و نقشه‌های شناسایی داد که آنومالی‌های Zn، Pb، Fe، Sb، عنصری می‌باشد.
این نمونه‌های سنگی نیز برای 23 عنصر به روش ICP-AES و تجزیه املاحی برای 15 عنصر به روش Fire Assay تجزیه گردیدند. نتایج این تجزیه‌ها (جدول 3) و قیاس آن ها [7] نشان می‌دهد برخی نمونه‌ها عقیم و برخی نمونه‌ها غنی‌شده Fe، Zn، Pb، Cu، Fe، Zn، Cu، Fe، Zn，
نتیجه‌گیری

پیشینش گسترده انومالی‌های زنوشیمیایی در منطقه \(\text{Zn}, \text{Pb}, \text{Fe}, \text{Sb}, \text{As}, \text{Ag}, \text{Au} \) مربوط به عناصر می‌باشد و نقش‌های کانی سمنگان انطباق خوبی را با مناطق آنومال زنوشیمیایی نشان داده، همچنین نمونه‌های مینال‌بردگی، حتی شدید و پرازاس پیشنهاد می‌گردد که بطور کلی در زمان تأثیر مکمل‌های گروهی بی‌پس از گزارشی توده می‌باشد، چون به وضوح سطح‌های توده‌ای بی‌پس از گزارشی کرده است.

منابع

1- حسینی پاک، ع.(1381). اصول اکتشافات زنوشیمیایی، انتشارات دانشگاه تهران، 541 ص.
2- حسینی پاک، ع.، شرف‌الدین، م.(1380)، تحلیل داده‌های اکتشافی، انتشارات دانشگاه تهران، 987 ص.
3- مهندسین منادر کانون شرق(1383)، گزارش اکتشاف سنگ‌های زنوشیمیایی، محدوده بهره‌برداری، 1000000 ها، سنگ‌های زمین‌شناسی و اکتشافات منطقه کشور، 1325 ص.
4- پرویزی، م. (1355)، بی‌پاس از سنگ‌های زمین‌شناسی ایران، انتشارات سرامان زمین‌شناسی و اکتشافات منطقه کشور، 94 ص.
5- پرصلی، م. (1381)، اکتشافات زنوشیمیایی مس و طلا و یافته‌های روده از سنگ‌های پارس.
