| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,570,032 |
| تعداد دریافت فایل اصل مقاله | 56,271,961 |
Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification | ||
| International Journal of Smart Electrical Engineering | ||
| مقاله 1، دوره 05، شماره 01، اردیبهشت 2016، صفحه 1-4 اصل مقاله (292.97 K) | ||
| نوع مقاله: Research Paper | ||
| نویسنده | ||
| Alireza Rezaee* | ||
| Assistant Professor of Department of system and Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, | ||
| چکیده | ||
| Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction using genetic algorithm as a wide search method and we choose 6 best frequency band powers of EEG, in order to speed up processing and meanwhile avoid classifier over fitting. As a result a vector of power spectrum of EEG frequency bands (alpha, beta, gamma, delta & theta) was found that reduces the dimension while giving almost the same correct classification rate. | ||
| کلیدواژهها | ||
| Brain-Computer interface (BCI)؛ Electroencephalogram (EEG)؛ Feature reduction؛ Genetic Algorithm (GA)؛ Mental task؛ Linear discriminant analysis (LDA) | ||
|
آمار تعداد مشاهده مقاله: 894 تعداد دریافت فایل اصل مقاله: 927 |
||