A Conceptual Model on Relationship between Structure and Functions in Rangeland Ecosystems

Amir Ahmadpoura*, Gholam Ali Heshmatib, Ramtin Joolaiec
aDepartment of Rangeland Science, Gorgan University of Agricultural Science and Natural Resources, Iran, *(Corresponding Author), Email: amirahmadpoor@gmail.com
bDepartment of Rangeland Science, Gorgan University of Agricultural Science and Natural Resources, Iran
cDepartment of Agricultural Economics, Gorgan University of Agricultural Science and Natural Resources, Iran

Received on: 29/07/2016
Accepted on: 25/11/2016

Abstract. One of the most important issues in structure-function relationship modeling is that each rangeland has numerous functions and each of them can provide the most benefits in a certain state of that ecosystem. In fact, relationship between structure and function can be varied in different states. After presentation of the Linear Structure-Function Model based on the Clementsian succession theory, another conceptual model was proposed to modify it based on more realistic State and Transition theory. While previous models mostly suppose one single function in their simulations, in this article, we suggest a conceptual model that summarizes the relationships between Ecosystem Structure and Multiple Functions (ESMF) in various states. The model can be useful for rangeland managers to get a rather correct understanding about multiple functions in rangelands. By this right understanding, the rangeland managers will be able to identify the best states for their ecosystems and try to reach to these states which can provide totally maximum benefits. This model shows that some functions in rangelands may conflict with or overlapped each other and some functions may not show a meaningful relationship with structure in ecosystems so that it is a very important task for managers to choose the states with the highest benefits and less conflict.

Key words: Ecological functions, Human well-being functions, ESMF model, Rangeland management
Introduction
Structure and function are two inherent attributes in any ecosystems. Structure refers to the constitutive physical components of ecosystem and also the style of their establishment (spatial distribution) (Bradshaw, 1984). But the concept of function may be very wider. In some references, function has been defined as goods and services that are provided by ecosystems (Millennium Ecosystem Assessment, 2005; De Groot, 1992; Costanza et al., 1997; Daily et al., 2000; De Groot et al., 2002; Turner et al., 2003; Ciais et al., 2005). Some references in the definition of ecosystem functions put emphasis on ecological concepts (the ecological based view). In their view, the ecological characteristics such as stability, conservation, diversity, and carbon sequestration are more important (Tilman et al., 1996; Bodin and Wiman, 2007; DSEWPC, 2011). Some of scientists that support this view even have known the stability of an ecosystem equivalent to its function (Walker, 1992; Tilman, 1999; Loreau, 2000; Loreau et al., 2001; Hooper et al., 2005; Srivastava and Vellend, 2005). This diversity of ideas about ecosystem functions is not resulted from personal ideas but rather it is resulted from the extreme diversity in the nature.

Recognition of indicators that can be easily evaluated and applied as pulses for managers to discover alarms is very important in rangeland management. Functions probably are the best indicators for this purpose (Tongway and Hindley, 2004) because they are the best criteria for the evaluation of sustainability. Ecosystem function can be defined as all benefits, services and goods which an ecosystem can provide (De Groot et al., 2002). Also, human well-being functions in an ecosystem are very diverse. In a given state, these functions may not be fitted with the ecological function or even may not be fitted with each other. In fact, each ecosystem in a given state has special conditions and structure that make it more performing for some given functions. So, having a correct understanding about the relationship between structure and ecosystem functions is very important. However, the relationships among components in rangeland ecosystems (structure) are more complex in a way that we cannot evaluate them without a pre-designed model. Thus, presentation of a model that can simplify these relationships is very important. On the other hand, functions in rangelands are very diverse and it is necessary to have a presentation of a model which can reflect the performance of various ecosystem functions in a relationship with structure in rangelands.

In this paper, we discussed the differences between various rangeland ecosystem functions and emphasized that ecological and human well-being functions are different more specially. Since a certain ecosystem mostly has multiple functions, we also propose a conceptual model that shows a realizable relationship between structure and multiple functions of ecosystem in various states. Also, we introduced the ESMF model which shows a hypothetical pattern of rangeland ecosystem structure in a relationship with multiple functions in various states. In attention to dynamism in ecosystems, it is important for rangeland managers to specify their target functions and direct their ecosystems to the states that produce the highest benefits.

Structure-function relations in ecosystems
Relationship between structure and ecosystem functions has been surveyed by many studies (Francis et al., 1979; Hobb and Norton, 1996; Zedler and Callaway, 1999; Lockwood and Samuels, 2004). The Linear Structure vs. Function (LSF) model that was presented by Bradshaw (1984) specified a linear relationship between structure and
ecosystem function based on the succession theory (Clements, 1916). This theory assumed that no disturbances are influencing ecosystems so that their structures can be developed during the time, and as a result, their functions will be raised in the same rate (Fig. 1). However, the criticisms around the Clementsian theory challenged the LSF model too (Muller, 1940; Westoby et al., 1989; Smith, 1989; Laycock, 1989 and 1991; Freidel, 1991; Rodriguez-Iglesias and Kothmann, 1997; Reitkerk and van de Koppel, 1997; Bestelmeyer et al., 2003; Briske et al., 2005). Cortina et al. (2006) reviewed the LSF model and tried to modify it. They illustrated that structure and function changes are not essentially symphonic in ecosystems.

According to state and transition theory (Westoby et al., 1989; Stringham et al., 2003), they expressed ecosystems during succession stages faced with various disturbances that can lead to the creation of new states. Similarly, various relationships can be established between structure and function but they essentially will not follow a similar path. By referring to some studies (Ostfeld and LoGiudice, 2003; Smith and Knapp, 2003), they explained that decreasing of species richness (as an index of structure) in ecosystems may not always lead to decreasing function, at least not in a same rate. They presented a conceptual model of ecosystem dynamics based on structure and function changes (Fig. 2). According to their model, various states that were generated by environmental or management factors show the points that are more probable in structure-function space and may be created by gradual or sudden changes in ecosystem characteristics.

![Fig. 1. Graphic representation of the structure–function model (Bradshaw, 1984)](image1)

Ecological and human well-being functions

Ecosystem function has a wide concept, thus before discussing about the relationship between structure and function, it is necessary to specify which concept we are talking about. We believe that there are fundamental differences between ecological and human well-being functions. In fact, these two types of functions may not coincide together in a rangeland. However, it is explicit that the nature does not coordinate its objectives with human’s requests or profits but rather it has own rules. Natural systems inherently tend to get stability and are flexible versus disturbances (Farrell et al., 2000; Walker and Del Moral, 2003; Stringham et al., 2003; Bodin and Wiman, 2007). This trend is the factor that boost the ecosystem to climax in the Clementsian succession theory and also is the gravity in ball and bowl model that pull the ball down in the
state and transition theory. We will not discuss about ‘what is this power?’ but it is noticed that ‘why is there this power?’ or on the other word, ‘what is the aim of nature from this trend? This issue can help us to get a better understanding about the concept of ecological function that we subsequently will discuss.

Although many criticisms have been signed against succession theory, it is accepted by many scientists that ecosystems inherently tend to increase their diversity (ecologically, biologically and genetically) (Odum, 1969; Tilman et al., 1996; Ives and Car-Penter, 2007; Karnani and Annila, 2009). Diversity helps rangeland ecosystems to complete their nutrition network and use maximum energies which are entered to them (Hoelzer et al., 2006; Whitfield, 2007; Sharma and Annila, 2007; Wurtz and Annila, 2010). In fact, like other biosystems, rangeland ecosystems tend to evolve.

In viewpoint of biology, it can be said that the aim of nature from dynamism and diversity is to get evolution (Pickering and Owen, 1994). From the initial creation of the universe, nature has been looking for evolution by creating new genes, species and ecosystems (Jaakkola et al., 2008 a, b; Annila and Annila, 2008; Kaila and Annila, 2008). In order to have a comprehensive discussion about the ecological function, we also have to discuss the scientific concept of natural evolution. Evolution of organisms can be basically divided into two material (physiologic) and immaterial features. Physiologic evolution refers to the adaptation and speciation for seizing new environments (Annila and Salthe, 2010) but immaterial evolution implies to the intangible part of organisms. It is the thing that develops brain and mind and includes occasions such as authority, decision, social relations, culture, instrument usage, and ingenuity (Cziko, 2000). However, evolution in ecosystems can be defined as ‘ability to maximize the energy and sources consumption’. It may be the most fundamental characteristic in the ecosystems.

In this study, we do not aim to discuss the evolution and its inbreeding factors, but we aim to show that the development of an ecosystem is ecologically important even if it may not be valuable economically. So, the first step in modeling the relationships between structure and ecosystem functions is to divide the functions into two main groups: ecological and human well-being functions. As mentioned above, these two groups may be inconsistent with each other. Various human well-being functions may not be essentially fitted to each other as well; sometimes, some conflicts may be happened among them. For example, recreational function in a rangeland ecosystem may be in conflict with its provision functions. On the other hand, all functions in an ecosystem mostly have some overlap; for example, a certain plant species may be valuable in view of medicine and industry. Our studies have shown that when the amount of utilized functions in a rangeland is increased, their benefits get raised but not in a cumulative way (Fig. 3) because some functions may overlap or be in conflict with each other.

![Fig. 3. Increased benefits as a result of increased multiple use of ecosystem functions (Ahmadpour et al., 2016)](image)

Presentation of a new model

According to the above discussions, we presented a new conceptual model to
show the relationship between structure and multiple functions (ESMF model) in rangeland ecosystems (Ahmadpour, 2016). This model shows a hypothetical pattern of ecosystem structure associated with multiple functions. At first, the model is explained based on the succession theory. Fig. 4 shows the ESMF model under conditions that no disturbing factors are existed and ecosystems naturally go through succession stages toward the evolution. In this model, ecological function (the bold continued lines) is compared with some other types of ecosystem functions. As it has been shown, ecological function (the ability of maximum usage of energy) has a positive (but not essentially linear) relationship with structure. Generally, at the initial succession stages by the development of each structure unit, the amount of consumed energy increases at a greater proportion. But this proportion will be less in the last succession stages because residual energy sources are at the minimum at these stages. This increase will be continued until the unconsumed energy in the ecosystem reaches to its minimum level and ecological function will be fixed at a given level (the maximum entropy level) (Schneider & Sagan, 2005; Aoki, 2006; Meysman and Bruers, 2010).

It must be noticed that the growth of ecological function curve in the initial stages is not necessarily similar for all ecosystems; it can be convex in some types of rangelands or concave in some others. In contrast, human well-being functions in ecosystems may show various patterns. Some of them may not show a significant relationship with ecosystem structure (function B). One example of these functions is aesthetic function. Actually, nobody can assert that a productive rangeland is certainly more pleasant than a bare desert. Other functions that are in relationship with structure can be noticed from two points of view: i) almost all of them need at least a minimum of structure development, ii) these functions increase by increasing the structure development, but some of them continue this procedure until they reach to the maximum level at the climax stage (function D) (for example utilization of timber that is more suitable on the dense forest). Some functions may even show an inverse relationship with structure development (function C) (for example, forage production in rangelands mostly is maximized at the pre-climax stage of vegetation succession and rangeland managers are mostly interested in maintaining their ecosystems at this stage).

However, the Clementsian succession is known as a visionary concept among the ecologists who believed that the real macrocosm is influenced by many natural
and man-made factors. So, the models which are presented to explain the relationship between structure and ecosystem functions must be based on more realistic theories to be more applicable in view of ecosystem management. Fig. 5 shows the modified ESMF model based on the state and transition theory. In this model, various states have been assumed for a rangeland ecosystem and we have named them by numbers 1, 2, 3 and 4 (these numbers may be more). Disturbing or restoring factors can convert these states to each other (although conversion from state 1 to state 4 and vice versa may be very difficult). Slumping and rising in the ecological function curve respectively refer to disturbing and restoring activities and show their effects on ecosystem structure and functions. As it has been observed, when a disturbance occurs and the structure development curve shifts to the left, the ecological function curve descends. Other functions may be independent and fluctuate through various states. The presented model actually is a hypothetical pattern that has been made based on the existing knowledge about the relationships among rangeland ecosystem components.

It is explicit that neither of the states or functions that have been presented in the model refers to a real state or function. Also, arches at the curves never try to show the real amounts but they served just to show that the relationship is not linear necessarily.

Conclusion

Although the number of functions that each ecosystem can provide is very much, we can categorize them into two main groups: ecological and human-wellbeing functions. Some studies have tried to present a model simulating the relationship between structure and function in ecosystems (Bradshaw, 1984; Cortina *et al.*, 2006). While a given ecosystem may have numerous functions, these studies mostly suppose just a single function in their simulations. In this paper, we introduce the ESMF model which shows a hypothetical pattern of ecosystem structure in the relationship with multiple functions. The ESMF model shows that the ecological function always has a direct (but no linear essentially) relationship with the development of ecosystem structure. In fact, when the structure develops during the sequence process (movement of graph to the right), the ecological function (evolution of energy chain) is raised too and when the structure goes through a retrogression process (movement of graph to the left), the ecological function gets fall (Ahmadpour, 2016). The sequence process or any restoration operations may push the graph foreword, and against any disturbing actions such as overgrazing or drought, they can return it backward.

In the model, we have noticed the ecosystem state which has extracted from the state and transition concept. Each state in this model can include various functions with given situations while these situations may be varied at the other states. The ESMF model implies that the states (1, 2, 3 and 4 numbers) can be converted to each other by some factors such as restoration or disturbing actions although the converting of state 1 to state 4 may be more difficult. Also, rangeland managers by applying management operations can direct their ecosystems to the desired states which provide the highest benefits for them.
Rangelands in many countries are not in a good condition that mostly results from overgrazing (Moghaddam, 2000). So, it is important for rangeland utilizers to change their strategies into multiple utilization procedures. It can moderate the utilization pressure on the ecosystems. In this way, they need to have a relatively right understanding about the relationships between various functions in rangelands. The ESMF model shows that some functions in rangelands may not have a meaningful relationship with ecosystems structure whereas some others may be completely correlated with it. Thus, managers need to focus on the functions which are more sensitive against the structure variations.

Also, at a given ecosystem with different states, each function may show a different behavior in the relationship with structure. It means that by changing the condition at a rangeland, the functions which provide the highest benefits may change; therefore, rangeland managers need to identify the functions with the best benefits in each state. The ESMF model can be useful for them to understand these behaviors of functions in rangelands. The model shows when the structure of a rangeland develops during the sequence process, how various functions can be changed on it. By this knowledge about the functions behavior in the rangelands, managers will be able to predict the benefit changes in the future and direct their ecosystems to the states that provide the highest benefits. However, directing a rangeland ecosystem to a state that maximizes a given function may result in adverse effects on other functions in long time. So, the establishment of an equilibrium among several functions seems to be better than considering a single function alone.

It is must be noticed that decision making about the target function(s) is an important task for rangeland managers. They can direct their rangelands to a given state by applying the restoration or other management operations. The ESMF model just simulates the variations of benefits provided by multiple functions in ecosystems and in relationship with structure.

Acknowledgements
The authors are grateful to G. Ghorbani and F. Ghadiri for helping with the office works. We thank many people for helping with the field studies, especially R. Yari and H. Shakib. This study was financial supported by Gorgan University of Agricultural Sciences and Natural Resources.

References

ارائه یک مدل مفهومی از رابطه بین ساختار و کارکردها در اکوسیستم‌های مرتعی

امیر احمدپور، غلامعلی حشمتی، رامتین جولایی، همسان، همکاران

چکیده. علیرغم آنکه داشتن یک درک صحیح در خصوص رابطه بین ساختار و کارکردهای اکوسیستم‌های مرتعی از اهمیت قابل توجهی برخوردار است در حال حاضر یک مدل جامع و مورد توقف در این زمینه وجود ندارد. پس از ارائه مدل رابطه خطی بین ساختار و کارکردهای اکوسیستم‌ها اساساً براساس مدل توالی کلیماکس، مدل مفهومی دیگری به منظور بهبود مفاهیم آن بر مبنای نظریه حالت و انتقال بیشتری در این وسیله دیگر باقیمانده این ابتلا به درک کامل از یک اکوسیستم کارکردهای مختلفی وجود دارد و هر یک در وضعیت خاصی از ساختار اکوسیستم بیشترین منافع را برای افراد می‌کند. بنابراین به دلیل اکوسیستم‌ها بسیار مهم است که وضعیت‌های با کمترین منافع برای بهره‌داران فراهم می‌شود، افراد تیازانی و شامل کارکردهای مختلفی اکوسیستم‌ها بر پایه‌های متفاوت‌های مختلفی اکوسیستم‌ها و، کارکردهای مطلوب طبیعت (کارکردهای مطلوبی که در پایداری یک اکوسیستم دارای نقش اصلی هستند) سبب به اساس آن مدلی مفهومی از رابطه بین ساختار و کارکردهای اکوسیستم‌های مرتعی است. اگر این مدل به دلیل اکوسیستم‌ها کمک کنم که از وضعیت‌های مختلف اکوسیستم و چگونگی ارتباط آن با کارکردهای مختلف و منابع فراهم شد. تا توسط آنها مستند شود. بر مبنای این درک صحیح، اگر قادر خواهند بود تا از پایداری مختلفی که در اکوسیستم‌ها به دست می‌آید، بهترین حالات را انتخاب کنند، استراتژی‌های مدیریتی این را جهت رسیدن به آن ساختار از اکوسیستم طراحی کنند.

کلمات کلیدی: کارکردهای اکولوژیکی، کارکردهای مطلوب انسان، مدل ESMF، مدیریت اکوسیستم