Bending Analysis of Multi-Layered Graphene Sheets Under Combined Non-Uniform Shear and Normal Traction

M.M. Alipour 1, M. Shaban 2,*

1Department of Mechanical Engineering, University of Mazandaran, Babolsar, Iran
2Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamadan, Iran

Received 2 September 2016; accepted 20 November 2016

ABSTRACT
Bending analysis of multilayer graphene sheets (MLGSs) subjected to non-uniform shear and normal tractions is presented. The constitutive relations are considered to be non-classical based on nonlocal theory of elasticity. Based on the differential transformation method, numerical illustrations are carried out for circular and annular geometries. The effects of nano scale parameter, radius of circular and annular graphene sheet, number of layers as well as distance between layers in the presence of van der Waals interaction forces are investigated. In addition, the effects of different boundary conditions are also examined. The numerical results show that above mentioned parameters have significant effects on the bending behavior of MLGSs under the action of non-uniform shear and normal tractions.

Keywords: Graphene; Multilayer; Nonlocal; Shear and normal traction.

1 INTRODUCTION

Graphene sheets are adjacent nano-plates consisting of monolayer graphite. Due to their honeycomb lattice structure, multi layer graphene sheets has extraordinary and distinctive mechanical and electrical properties that make them valuable in a wide variety of applications in micro and nano-electromechanical systems (MEMS and NEMS) and large amount of research has been dedicated to their applications such as biotechnology, nano-mechanical resonator, etc ([1]-[2]). In the past decade, there are considerable researches focused on the behavior of nano structures by using conventional theories ([3]-[5]). These theories cannot capture intrinsic size-dependence properties of nanostructures. In order to overcome this problem, some scale-based theories such as Cosserat theory, couple stress theory and nonlocal theory are presented. Nonlocal theory is one of the familiar continuum models that includes intrinsic size-dependence in its constitutive equation [6] and great deal of attentions has been devoted to this theory ([7]). This theory has more accuracy compared with experimental results ([8]-[9]). Babaei and Shahidi [10] concerned quadrilateral multi-layered graphene sheets with simply supported edge conditions. They studied the free vibration behavior of MLGS by using nonlocal theory and showed that number of layer affected the higher modes. Duan and Wang [11] investigated the bending of circular micro and nano-plate. They used variable transformation technique to solve the nonlocal equations. They obtained that considering the nonlocal parameter leads to larger deflections. Lim et al. [12] investigated torsional vibration of nanotubes by considering axial moving of them. They derived their equations by considering history of nonlinear straining with reference to an undeformed state. Murmu and Pradhan [13] studied effect of nonlocal parameter on the free in-plane vibration of nano-plates. In the other work, Pradhan and Phadikar [14] used nonlocal classical and first order plate theory to analyze vibration of...
single and double layer nano-plates. They showed that effect of nonlocal theory becomes more significant when the size of the plate become small. Bi-axial buckling of double-orthotropic nano-plates was investigated by Radić et al. [15]. They focused on the effect of surrounding elastic medium and obtained that considering the elastic medium significantly reduces the impact of small scale effect. Zenkour and Sobhy [16] considered thermal buckling of single layered graphene sheets by using nonlocal sinusoidal shear deformation plate theory. They obtained that results obtained from shear deformation theory are more reliable than those obtained from classical plate theory. Wang and Li [17] studied the bending behavior of single layer rectangular nano-plate by using CPT and FSDT. They presented analytical formulations for simply-supported nano-plates. Narendar and Gopalakrishnan [18] extended nonlocal two-variable refined plate theory to investigate the buckling behavior of orthotropic nano-plate. They showed that buckling load of orthotropic nano-plate is always smaller than that of an isotropic nano-plate.

Farajpour et al. [19] investigated the buckling behavior of circular single-layered graphene sheets (SLGS) under uniform radial compression by using nonlocal elasticity theory. In other work, they considered non-uniformity in the thickness of nano-plate and showed that buckling behavior of SLGS is sensitive to this parameter [20]. Also, Malekzadeh and Farajpour [21] studied axisymmetric vibrations of circular nanoplates under initial in-plane radial stresses by employing Galerkin method. The effects of nonlocal parameter, elastic foundation and initial radial stresses on the natural frequency of the circular nanoplates are investigated by them. Bedroud et al. [22]-[23] presented an analytical solution for buckling analysis of both homogeneous and functionally graded circular/annular Mindlin nanoplates under uniform radial compressive in-plane load.

In other work, Shaban and Alibeigloo[24]-[26] investigated bending and free vibration behavior of single-walled carbon nano-tubes (SWCNTs) based on three-dimensional theory of elasticity. Surveying available literature reveals that up to now no research has been made to study the bending behavior of multilayer graphene sheets (MLGSs) with various boundary conditions and this research attempt to consider this. Furthermore, in the present research, a more general load consists of non-uniform shear and normal tractions are considered. A semi-analytical method based on the differential transform method (DTM) which is successfully used in previous works to determine stresses distribution and natural frequencies of two-directional functionally graded plates ([27]-[29]) is developed in this work to solve the governing equations of MLGSs. In the present study, effects of the van der Wall (vdW) interaction forces between layers are also included in the formulations and influences of these forces are discussed.

2 GOVERNING EQUATIONS

Consider an annular multilayer graphene sheets with outer radius \(R_o \), inner radius \(R_i \) and thickness \(h \) and vdW interaction force field as shown schematically in Fig. 1. For each layer, the Mindlin’s plate theory based on the following assumed displacement field

\[
u(r,z,t) = u_0(r,t) + z\psi_r(r,t) \quad \quad w(r,z,t) = w_0(r,t)\]

where \(u_0, v_0, \) and \(w_0 \) are the radial, circumferential, and transverse displacement components of the mid-surface of the circular plate, respectively. \(\psi_r \) is shear rotation of the normal to the middle surface with respect to the radial direction. The strain–displacement equations of linear elasticity are as follow

\[
\varepsilon_r = \frac{\partial u}{\partial r} = \frac{\partial u_0}{\partial r} + z \frac{\partial \psi_r}{\partial r}, \quad \varepsilon_\theta = \frac{u}{r} = \frac{u_0 + z \psi_r}{r}, \quad \varepsilon_z = \frac{\partial w}{\partial z} = 0, \quad \gamma_\alpha = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} = \psi_r + \frac{\partial w}{\partial r}
\]

In the nonlocal theory, unlike the stress tensor at a reference point in a continuum body depends not only on the strain tensor at that point, but also on the strain tensor of other points. Constitutive model that expresses the nonlocal stress tensor is as follow

\[
(1 - \mu \Delta^2) \sigma_{ij} = t_{ij} = c_{ijkl} \varepsilon_{kl}
\]

\(\mu \) is the nonlocal parameter, \(\sigma_{ij} \) is the nonlocal stress tensor, \(t_{ij} \) is the local (classical) stress tensor, \(c_{ijkl} \) is the
fourth-order elasticity tensor and ε_{ij} is the local (classical) strain tensor. According to Eq. (2) the constitutive relations for circular and annular nano-plate are given by

$$
(1 - \mu \nu^2) \sigma_r = \frac{E}{1 - \nu^2} (\varepsilon_r + \nu \varepsilon_\theta)
$$

$$
(1 - \mu \nu^2) \sigma_\theta = \frac{E}{1 - \nu^2} (\varepsilon_\theta + \nu \varepsilon_r)
$$

$$
(1 - \mu \nu^2) \sigma_z = 0
$$

$$
(1 - \mu \nu^2) \sigma_{rz} = \kappa^2 \frac{E}{2(1+\nu)} y_{rz}
$$

κ^2 denotes the transverse shear correction factor. The stress and moment resultants per unit length defined as below:

$$
\begin{align*}
\left\{ \tau_{a\beta} \right\} &= \int_{-h/2}^{h/2} \sigma_{a\beta} \left\{ \frac{1}{z} \right\} dz, \\
Q_{a\beta} &= \int_{-h/2}^{h/2} \tau_{a\beta} dz
\end{align*}
$$

By substituting Eqs. (2) into Eqs. (4) and (5), the following equations can be derived for each layer

$$
\begin{align*}
(1 - \mu \nu^2) N_r^{(i)} &= A \left(u_{0,r}^{(i)} + \frac{V}{r} u_{0,t}^{(i)} \right) + B \left(\psi_r^{(i)} + \frac{V}{r} \psi_r^{(i)} \right) \\
(1 - \mu \nu^2) N_\theta^{(i)} &= A \left(\frac{u_{0,t}}{r} + \nu u_{0,r}^{(i)} \right) + B \left(\psi_\theta^{(i)} + \frac{V}{r} \psi_{\theta}^{(i)} \right) \\
(1 - \mu \nu^2) M_r^{(i)} &= B \left(u_{0,r}^{(i)} + \frac{V}{r} u_{0,t}^{(i)} \right) + D \left(\psi_r^{(i)} + \frac{V}{r} \psi_r^{(i)} \right) \\
(1 - \mu \nu^2) M_\theta^{(i)} &= B \left(\frac{u_{0,t}}{r} + \nu u_{0,r}^{(i)} \right) + D \left(\psi_\theta^{(i)} + \frac{V}{r} \psi_{\theta}^{(i)} \right) \\
(1 - \mu \nu^2) Q_r^{(i)} &= \kappa^2 \bar{A} \left(\psi_r^{(i)} + w_r^{(i)} \right)
\end{align*}
$$

where

$$
\begin{align*}
\left\{ \begin{array}{c} A \\ B \\ D \end{array} \right\} &= \int_{-h/2}^{h/2} \frac{E}{1 - \nu^2} \left\{ \frac{1}{z^2} \right\} dz, \\
\bar{A} &= \int_{-h/2}^{h/2} \frac{E}{2(1+\nu)} dz
\end{align*}
$$

Here, the principle of minimum total energy is used to derive the governing equations.

$$
\delta \Pi = \delta U - \delta W = 0
$$

where U and W are the strain energy and work of the externally applied loads, respectively. The variation of strain energy and work of the externally applied loads are as follow,

$$
\begin{align*}
\delta U &= \int \left[(\sigma_r^{(i)} \varepsilon_r^{(i)} + \sigma_\theta^{(i)} \varepsilon_\theta^{(i)} + \tau_{rz}^{(i)} \varepsilon_{rz}^{(i)}) dV, \\
\delta W &= \int \left[q^{(i)} \delta w^{(i)} + T^{(i)} (r) \delta \dot{w}^{(i)} - C (w^{(i)} - w^{(i-1)}) \delta (w^{(i)} - w^{(i-1)}) - C (w^{(i)} - w^{(i+1)}) \delta (w^{(i)} - w^{(i+1)}) \right] dA
\end{align*}
$$
where T and P are shear and normal tractions applied to graphene sheets, respectively. i is the layer number and it can be seen that each layer interacted by adjacent top and bottom layer. It is worthy to mention that vdW interaction forces between layers are taken into consideration by utilizing springs with constant C. The 1^{st} and n^{th} layers are interacted only by their neighboring layer.

By using Eqs. (1) and (2), Eqs. (9) can be written as follow:

$$\delta U = \int \left(N_r^{(i)} \frac{\partial \delta u_r^{(i)}}{\partial r} + M_r^{(i)} \frac{\partial \delta u_\theta^{(i)}}{\partial r} + N_\theta^{(i)} \frac{\partial \delta u_\theta^{(i)}}{\partial \theta} + M_\theta^{(i)} \frac{\partial \delta u_\theta^{(i)}}{\partial \theta} + Q_r^{(i)} \frac{\partial \delta \psi_r^{(i)}}{\partial r} + Q_\theta^{(i)} \frac{\partial \delta \psi_\theta^{(i)}}{\partial \theta} \right) dA,$$

$$\delta W = \int \left[q^{(i)} \delta w^{(i)} + T^{(i)}(r) \delta \left(u_0^{(i)} - \frac{h}{2} \psi_r^{(i)} \right) - C \left(w^{(i)} - w^{(i-1)} \right) \delta \left(w^{(i)} - w^{(i+1)} \right) - C \left(w^{(i)} - w^{(i+1)} \right) \delta \left(w^{(i)} - w^{(i+1)} \right) \right] dA \tag{10}$$

By substituting Eq. (10) into Eq. (8), using the theorem of integration by parts and collecting the coefficients of $\delta u_0^{(i)}$, $\delta \psi_r^{(i)}$, and $\delta w^{(i)}$, three governing equations for i^{th} layer may be derived in the cylindrical coordinate system (r, θ, z)

$$\frac{\partial N_r^{(i)}}{\partial r} + \frac{N_\theta^{(i)}}{r} - \frac{N_\theta^{(i)}}{r} = -T^{(i)}(r)$$

$$\frac{\partial M_r^{(i)}}{\partial r} + \frac{M_\theta^{(i)}}{r} - \frac{M_\theta^{(i)}}{r} - Q_r^{(i)} = \frac{h}{2} T^{(i)}(r)$$

$$\frac{\partial Q_r^{(i)}}{\partial r} + Q_\theta^{(i)} = -q^{(i)} + C \left(w^{(i)} - w^{(i-1)} \right) + C \left(w^{(i)} - w^{(i+1)} \right) \tag{11}$$

Considering Eqs. (6), one can obtain the governing Eqs. (11) in terms of displacement components

$$\delta u_0 : A \left(u_0^{(i)} \right) + B \left(\frac{u_0^{(i)}}{r} \right) = - \left(1 - \mu \nabla^2 \right) \left(T^{(i)}(r) \right)$$

$$\delta \psi_r : B \left(\frac{u_0^{(i)}}{r} \right) + D \left(\frac{\psi_r^{(i)}}{r^2} \right) - \kappa^2 A \left(\psi_r^{(i)} + w^{(i)} \right) = \frac{h}{2} \left(1 - \mu \nabla^2 \right) \left(T^{(i)}(r) \right) \tag{12}$$

$$\delta w : \kappa^2 A \left(\psi_r^{(i)} + w^{(i)} + w^{(i)} \right) = \left(1 - \mu \nabla^2 \right) \left[-q^{(i)}(r) + C \left(w^{(i)} - w^{(i+1)} \right) + C \left(w^{(i)} - w^{(i-1)} \right) \right]$$

Fig.1
Schematic of Multi layer graphene sheets.

© 2017 IAU, Arak Branch
3 SOLUTION PROCEDURE FOR SOLVING GOVERNING EQUATIONS

The set of governing equations are solved by using differential transformation method). The displacement components \((u_0, w_0)\) and radial rotation \(\psi_r\) are analytic in our domain and can be represented by using Taylor power series as follow:

\[
u_0(r) = \sum_{k=0}^{\infty} U_k^i (r-r_0)^k \quad w_0(r) = \sum_{k=0}^{\infty} W_k^i (r-r_0)^k \quad \psi^i_r(r) = \sum_{k=0}^{\infty} \Psi_k^i (r-r_0)^k \quad (13)
\]

In the above relations, \(U_k^i, W_k^i, \Psi_k^i\) are the transformed functions in DTM. In this study, non-uniform shear and normal tractions are considered as follow

\[
q(r) = \tilde{q} \left[\alpha_0 + \alpha_1 (r-r_0) + \alpha_2 (r-r_0)^2 \right] \quad T(r) = \tilde{T} \left[\beta_0 + \beta_1 (r-r_0) + \beta_2 (r-r_0)^2 \right]
\]

Substituting relations (13) into Eqs. (12), one may obtain three transformed differential equations for governing equations

\[
\sum_{k=0}^{N} \left[A \left((k+2)(k+1)U_{k+2}^i - \sum_{i=0}^{k+1} \left(\frac{1}{r_0} \right)^{i+1} (k-l+1)U_{l+1}^i \right) - B \left((k+2)(k+1)\Psi_{k+2}^i - \sum_{i=0}^{k+1} \left(\frac{1}{r_0} \right)^{i+1} (k-l+1)\Psi_{l+1}^i \right) \right] - \tilde{T} \left[(\beta_0 - 2\mu\beta_2)\delta(k) + \beta_1 \delta(k-1) + \beta_2 \delta(k-2) \right] - \mu \tilde{T} \left[\beta_1 \left(\frac{1}{r_0} \right)^{k+1} + 2\beta_2 \left(\frac{1}{r_0} \right)^k \right] (r-b)^k = 0
\]

Notices that series expansion formulations provided below are used to obtain Eqs. (15)

\[
\frac{1}{r} = \sum_{i=0}^{\infty} \left(\frac{1}{r_0} \right)^{i+1} (r-r_0)^i \quad \frac{1}{r^2} = \sum_{i=0}^{\infty} (l+1) \left(\frac{1}{r_0} \right)^{i+2} (r-r_0)^i \quad (16)
\]

To find the solution of Eq. (15), it is required that the coefficient of terms with same powers is set equal to zero and recurrence relations are founded. To obtain the coefficients \(\Psi_0^i, \Psi_1^i, U_0^i, U_1^i, W_0^i, W_1^i\) boundary conditions should be taken into account. Three types for boundary conditions and their transformed forms are given in as follows.

Clamped (C):

\[
u_0^i = \sum_{k=0}^{N+2} U_k^i (r-r_0)^k = 0 \quad \psi_r^i = \sum_{k=0}^{N+2} \Psi_k^i (r-r_0)^k = 0 \quad w^i = \sum_{k=0}^{N+2} W_k^i (r-r_0)^k = 0 \quad (17)
\]

Simply supported (S):

© 2017 IAU, Arak Branch
\[u_0^{(i)} = \sum_{k=0}^{N+2} U_k^{(i)}(r-r_o) = 0 \]
\[M_r = \sum_{k=0}^{N+1} \left[B(k+1)U_{k+1}^{(i)} + \frac{B}{r} U_k^{(i)} + D(k+1)\Psi_{k+1}^{(i)} + \frac{D}{r} \Psi_k^{(i)} \right](r-r_o) = 0 \] (18)
\[w^{(i)} = \sum_{k=0}^{N+1} W_k^{(i)}(r-r_o) = 0 \]

Free edge (F):
\[N_r^{(i)} = \sum_{k=0}^{N+1} \left[A(k+1)U_{k+1}^{(i)} + \frac{A}{r} U_k^{(i)} + B(k+1)\Psi_{k+1}^{(i)} + \frac{B}{r} \Psi_k^{(i)} \right](r-r_o) = 0 \]
\[M_r^{(i)} = \sum_{k=0}^{N+1} \left[B(k+1)U_{k+1}^{(i)} + \frac{B}{r} U_k^{(i)} + D(k+1)\Psi_{k+1}^{(i)} + \frac{D}{r} \Psi_k^{(i)} \right](r-r_o) = 0 \] (19)
\[Q_r^{(i)} = \sum_{k=0}^{N+1} \left[\kappa A\Psi_{k+1}^{(i)} + \kappa A(k+1)W_{k+1}^{(i)} \right](r-r_o) = 0 \]

In the center of solid circular graphene sheets, the following conditions should be satisfied:
\[u_0^{(i)} = \sum_{k=0}^{N+2} U_k^{(i)}(-r_o) = 0 \]
\[\psi_r^{(i)} = \sum_{k=0}^{N+1} \psi_{k+1}^{(i)}(-r_o) = 0 \] (20)
\[Q_r^{(i)} = \sum_{k=0}^{N+1} \left[\kappa A\Psi_{k+1}^{(i)} + \kappa A(k+1)W_{k+1}^{(i)} \right](-r_o) = 0 \]

4 NUMERICAL RESULTS AND DISCUSSION

First, for comparison purposes, the present analysis was initially restricted and applied to the case of double layer circular graphene sheets subjected uniformly normal traction \(q=0.14 \) MPa plates having Young’s modulus \(E=0.396E_c, E_c=151 \) Gpa and Poisson’s ratio \(v=0.288 \) and compared with the corresponding results in reference [30]. \(C \) is vdW interaction constant between graphene layers. The non-dimensional deflection is defined as
\[w = \frac{64D}{q\varepsilon_o} w, \quad D_c = \frac{E_c h^3}{12(1-v^2)} \]. As it is observed from Table 1., there is good agreement between the obtained results and previous researches. Moreover, from Table 1., one can observed that decreasing constant \(C \), caused the deflection of upper graphene layer to increased opposite to deflection of lower graphene layer. According to Table 1., one can see that if vdW constant, \(C \), is significantly large, the springs become rigid and the deflection of two layers be equal. But when this constant become very small, the deflection of first layer has no effect on the deflection of second adjacent layer. In the remaining parts of this study, the material and geometrical properties are assumed as follow: Young modulus \(E=2.99 \) TPa, thickness \(h=0.34 \) nm, \(q=100 \) MPa, Poisson’s ratio \(v=0.397 \).

Table 2. shows the dimensionless central deflection (\(\hat{w}^{(i)} = w^{(i)}/h \)) of a simply supported double layer circular graphene sheets under uniformly normal traction for different values of nonlocal parameter, vdW interaction constant and outer radius. Similar results presented in Table 3. for double layer fully clamped circular graphene sheets. From these tables, one can observed that irrespective of other parameters, by increasing the nonlocal parameter, \(\mu \), the central deflection of first layer, \(\hat{w}^{(i)} \) will be decreased. In contrast, the central deflection of second
layer, $\bar{w}^{(2)}$ will be increased. Furthermore, it can be observed that $\bar{w}^{(1)}$ contrary to $\bar{w}^{(2)}$ decreased when the $\nu d W$ constant, C, increased. For double layer graphene sheets with larger diameters, however, it is seen from Tables 2 and 3 that both central deflections get almost larger. Also, considering edge condition, the central deflections in clamped circular graphene sheets are always smaller than those with simply supported edge condition.

Table 1
Comparison of dimensionless central deflection, \bar{w} for the double layer circular nano-plate.

<table>
<thead>
<tr>
<th>B.C</th>
<th>τ</th>
<th>10^{12}</th>
<th>10^{9}</th>
<th>10^{6}</th>
<th>10^{3}</th>
<th>Ref [30]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamp</td>
<td>0.1</td>
<td>$\bar{w}^{(1)}$</td>
<td>1.320</td>
<td>1.565</td>
<td>2.635</td>
<td>2.640</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{w}^{(2)}$</td>
<td>1.320</td>
<td>1.075</td>
<td>0.005</td>
<td>5.110x10^{-12}</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>$\bar{w}^{(1)}$</td>
<td>1.494</td>
<td>2.442</td>
<td>2.984</td>
<td>2.985</td>
</tr>
<tr>
<td>Simply</td>
<td>0.1</td>
<td>$\bar{w}^{(2)}$</td>
<td>1.491</td>
<td>0.543</td>
<td>0.0008</td>
<td>8.321x10^{-13}</td>
</tr>
<tr>
<td>Support</td>
<td></td>
<td>$\bar{w}^{(1)}$</td>
<td>5.241</td>
<td>5.507</td>
<td>10.401</td>
<td>10.482</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>$\bar{w}^{(2)}$</td>
<td>5.415</td>
<td>7.158</td>
<td>10.816</td>
<td>10.827</td>
</tr>
</tbody>
</table>

Table 2
Central dimensionless deflection of simply supported double layer circular nano-plate under uniformly distributed loading.

<table>
<thead>
<tr>
<th>μ (nm2)</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C=5\times10^{18}$</td>
<td>$C=5\times10^{18}$</td>
<td>$C=5\times10^{18}$</td>
<td>$C=5\times10^{18}$</td>
<td>$C=5\times10^{18}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=1nm$</td>
<td>0.001739</td>
<td>0.001706</td>
<td>0.020780</td>
<td>0.018590</td>
<td>0.497578</td>
<td>0.488279</td>
<td>7.66279</td>
<td>7.65541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=2nm$</td>
<td>3.43x10^{-5}</td>
<td>6.62x10^{-5}</td>
<td>0.004638</td>
<td>0.006827</td>
<td>0.463039</td>
<td>0.472338</td>
<td>7.63326</td>
<td>7.64071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=5nm$</td>
<td>0.001583</td>
<td>0.00146</td>
<td>0.017981</td>
<td>0.016005</td>
<td>0.495281</td>
<td>0.487626</td>
<td>7.66276</td>
<td>7.65541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=10nm$</td>
<td>0.000189</td>
<td>0.000131</td>
<td>0.007437</td>
<td>0.009412</td>
<td>0.465336</td>
<td>0.472991</td>
<td>7.63335</td>
<td>7.64071</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Central dimensionless deflection of clamped double layer circular nano-plate under uniformly distributed loading.

<table>
<thead>
<tr>
<th>μ (nm2)</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
<th>$\bar{w}^{(1)}$</th>
<th>$\bar{w}^{(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C=5\times10^{18}$</td>
<td>$C=5\times10^{18}$</td>
<td>$C=5\times10^{18}$</td>
<td>$C=5\times10^{18}$</td>
<td>$C=5\times10^{18}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=1nm$</td>
<td>0.000636</td>
<td>0.000632</td>
<td>0.006791</td>
<td>0.006402</td>
<td>0.143469</td>
<td>0.138586</td>
<td>2.00355</td>
<td>1.99615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=2nm$</td>
<td>4.69x10^{-6}</td>
<td>9.26x10^{-6}</td>
<td>0.000514</td>
<td>0.000906</td>
<td>0.109737</td>
<td>0.11835</td>
<td>1.97404</td>
<td>1.98143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=5nm$</td>
<td>0.00061</td>
<td>0.000585</td>
<td>0.0062</td>
<td>0.005602</td>
<td>0.140572</td>
<td>0.133692</td>
<td>2.00346</td>
<td>1.99613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=10nm$</td>
<td>3.06E-05</td>
<td>5.59E-05</td>
<td>0.001108</td>
<td>0.001705</td>
<td>0.112634</td>
<td>0.119514</td>
<td>1.97413</td>
<td>1.98146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=2nm$</td>
<td>5.24E-05</td>
<td>9.03E-05</td>
<td>0.001511</td>
<td>0.00214</td>
<td>0.114635</td>
<td>0.120455</td>
<td>1.97421</td>
<td>1.98148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=5nm$</td>
<td>0.00057</td>
<td>0.000524</td>
<td>0.005505</td>
<td>0.004893</td>
<td>0.137092</td>
<td>0.132019</td>
<td>2.00322</td>
<td>1.996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=10nm$</td>
<td>7.14E-05</td>
<td>0.000117</td>
<td>0.001803</td>
<td>0.002414</td>
<td>0.116114</td>
<td>0.121187</td>
<td>1.97437</td>
<td>1.98158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r=5nm$</td>
<td>0.000539</td>
<td>0.000487</td>
<td>0.005111</td>
<td>0.004567</td>
<td>0.135038</td>
<td>0.130971</td>
<td>2.00253</td>
<td>1.99568</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2017 IAU, Arak Branch
The central dimensionless deflection in $r=2nm$ is tabulated in the Table 4. for different number of layers. From Table 4., it is clear that for graphene sheets with higher number of layers, the $\hat{w}^{(i)}$ reduced and distributed among other layers. That is to be expected, because the constraint of clamped boundary condition is stronger than simply supported boundary condition and the $\hat{w}^{(i)}$ is smaller.

Table 4
Central dimensionless deflection of simply supported multi-layer circular nano-plate under uniformly distributed loading ($r=2nm$, S:Simply, C:Clamped).

<table>
<thead>
<tr>
<th>μ (nm2)</th>
<th>3 Layer</th>
<th>4 Layer</th>
<th>6 Layer</th>
<th>8 Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma^{(1)}$</td>
<td>0.018079</td>
<td>0.006389</td>
<td>0.018034</td>
<td>0.006389</td>
</tr>
<tr>
<td>$\sigma^{(2)}$</td>
<td>0.005401</td>
<td>0.000810</td>
<td>0.005276</td>
<td>0.000820</td>
</tr>
<tr>
<td>$\sigma^{(3)}$</td>
<td>0.000937</td>
<td>0.000109</td>
<td>0.001542</td>
<td>0.001507</td>
</tr>
<tr>
<td>$\sigma^{(4)}$</td>
<td>0.000552</td>
<td>1.3E-05</td>
<td>0.00043</td>
<td>1.17E-05</td>
</tr>
<tr>
<td>$\sigma^{(5)}$</td>
<td>0.001325</td>
<td>1.4E-06</td>
<td>0.000122</td>
<td>1.4E-06</td>
</tr>
<tr>
<td>$\sigma^{(6)}$</td>
<td>0.003772</td>
<td>0.000334</td>
<td>0.002764</td>
<td>0.000334</td>
</tr>
<tr>
<td>$\sigma^{(7)}$</td>
<td>0.001733</td>
<td>0.000101</td>
<td>0.001224</td>
<td>8.1E-05</td>
</tr>
<tr>
<td>$\sigma^{(8)}$</td>
<td>0.000569</td>
<td>1.98E-05</td>
<td>0.000527</td>
<td>1.96E-05</td>
</tr>
<tr>
<td>$\sigma^{(9)}$</td>
<td>0.00328</td>
<td>5.84E-06</td>
<td>0.000232</td>
<td>4.72E-06</td>
</tr>
<tr>
<td>$\sigma^{(10)}$</td>
<td>0.000108</td>
<td>1.15E-06</td>
<td>6.22E-05</td>
<td>3.93E-07</td>
</tr>
<tr>
<td>$\sigma^{(11)}$</td>
<td>0.012915</td>
<td>0.004969</td>
<td>0.012425</td>
<td>0.004946</td>
</tr>
<tr>
<td>$\sigma^{(12)}$</td>
<td>0.003165</td>
<td>0.006651</td>
<td>0.001607</td>
<td>0.006405</td>
</tr>
<tr>
<td>$\sigma^{(13)}$</td>
<td>0.005102</td>
<td>0.000683</td>
<td>0.003774</td>
<td>0.000533</td>
</tr>
<tr>
<td>$\sigma^{(14)}$</td>
<td>0.001759</td>
<td>0.000219</td>
<td>0.001765</td>
<td>0.001666</td>
</tr>
<tr>
<td>$\sigma^{(15)}$</td>
<td>0.000996</td>
<td>5.47E-05</td>
<td>0.000885</td>
<td>5.3E-05</td>
</tr>
<tr>
<td>$\sigma^{(16)}$</td>
<td>0.000682</td>
<td>2.23E-05</td>
<td>0.000467</td>
<td>1.7E-05</td>
</tr>
<tr>
<td>$\sigma^{(17)}$</td>
<td>0.000263</td>
<td>5.55E-06</td>
<td>0.00018</td>
<td>2.26E-06</td>
</tr>
<tr>
<td>$\sigma^{(18)}$</td>
<td>0.001975</td>
<td>0.004598</td>
<td>0.011256</td>
<td>0.004557</td>
</tr>
<tr>
<td>$\sigma^{(19)}$</td>
<td>0.009665</td>
<td>0.001814</td>
<td>0.006704</td>
<td>0.001731</td>
</tr>
<tr>
<td>$\sigma^{(20)}$</td>
<td>0.005778</td>
<td>0.000896</td>
<td>0.004258</td>
<td>0.000684</td>
</tr>
<tr>
<td>$\sigma^{(21)}$</td>
<td>0.003199</td>
<td>0.000336</td>
<td>0.002141</td>
<td>0.000246</td>
</tr>
<tr>
<td>$\sigma^{(22)}$</td>
<td>0.001352</td>
<td>9.66E-05</td>
<td>0.001165</td>
<td>9.22E-05</td>
</tr>
<tr>
<td>$\sigma^{(23)}$</td>
<td>0.001013</td>
<td>4.73E-05</td>
<td>0.000684</td>
<td>3.48E-05</td>
</tr>
<tr>
<td>$\sigma^{(24)}$</td>
<td>0.000431</td>
<td>1.36E-05</td>
<td>0.000323</td>
<td>6.66E-06</td>
</tr>
<tr>
<td>$\sigma^{(25)}$</td>
<td>0.001093</td>
<td>0.004115</td>
<td>0.009912</td>
<td>0.004026</td>
</tr>
<tr>
<td>$\sigma^{(26)}$</td>
<td>0.007932</td>
<td>0.001991</td>
<td>0.006694</td>
<td>0.001844</td>
</tr>
<tr>
<td>$\sigma^{(27)}$</td>
<td>0.006554</td>
<td>0.001201</td>
<td>0.00483</td>
<td>0.000897</td>
</tr>
<tr>
<td>$\sigma^{(28)}$</td>
<td>0.003981</td>
<td>0.000541</td>
<td>0.002627</td>
<td>0.000379</td>
</tr>
<tr>
<td>$\sigma^{(29)}$</td>
<td>0.001886</td>
<td>0.000184</td>
<td>0.001563</td>
<td>0.000169</td>
</tr>
<tr>
<td>$\sigma^{(30)}$</td>
<td>0.001551</td>
<td>0.00011</td>
<td>0.001043</td>
<td>7.73E-05</td>
</tr>
<tr>
<td>$\sigma^{(31)}$</td>
<td>0.000747</td>
<td>3.74E-05</td>
<td>0.000614</td>
<td>2.24E-05</td>
</tr>
</tbody>
</table>

At the next stage, parametric studies are conducted for annular multi-layers. Table 5. presented the $\hat{w}^{(i)}$ at the $r=3.5nm$. In this table, the influences of nonlocal parameter and boundary conditions on the variations of dimensionless deflections are studied. Influence of non-uniformity of shear and normal tractions are studied in Table...
6. for circular and annular multi-layer graphene sheets. Also, Table 7. shows the variation of the central deflection of 6 layer annular GS for non-uniform tractions and different combinations of boundary conditions. From Table 6., it is observed that the non-uniformity of external loads has a notable effect on the central deflection of circular MLGSs. From Table 7. it is observed that for four different boundary conditions, the annular graphene sheet with clamped-clamped boundary condition has the smallest deflection whereas clamped-free annular graphene sheet has the largest deflection since constraint of boundary conditions become weaker with order of clamped, simply supported and free edge conditions.

Table 5
Dimensionless deflection of multi-layer annular nano-plates at r=3.5 nm under uniformly distributed loading (C=10^79, r_c=2nm, r_s=5nm).

<table>
<thead>
<tr>
<th>μ (nm^2)</th>
<th>3 Layer</th>
<th>4 Layer</th>
<th>6 Layer</th>
<th>8 Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S - S C - F</td>
</tr>
<tr>
<td>0</td>
<td>0.17414 0.025492</td>
<td>0.017346 0.024209</td>
<td>0.017339 0.023702</td>
<td>0.017338 0.023655</td>
</tr>
<tr>
<td></td>
<td>0.005744 0.014716</td>
<td>0.005577 0.012977</td>
<td>0.005559 0.012293</td>
<td>0.005559 0.012228</td>
</tr>
<tr>
<td></td>
<td>0.002334 0.010726</td>
<td>0.001826 0.007916</td>
<td>0.001777 0.006811</td>
<td>0.001769 0.006706</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>0.000185 0.002423</td>
<td>7.51E-05 0.001789</td>
<td>5.72E-05 0.00121</td>
<td>1.87E-05 0.000749</td>
</tr>
<tr>
<td>1</td>
<td>0.014517 0.024516</td>
<td>0.014233 0.023072</td>
<td>0.014167 0.02246</td>
<td>0.014163 0.022395</td>
</tr>
<tr>
<td></td>
<td>0.006909 0.015102</td>
<td>0.006426 0.013201</td>
<td>0.006314 0.012397</td>
<td>0.006308 0.01231</td>
</tr>
<tr>
<td></td>
<td>0.004065 0.011316</td>
<td>0.003044 0.008349</td>
<td>0.002806 0.007099</td>
<td>0.002794 0.006964</td>
</tr>
<tr>
<td>2</td>
<td>0.013051 0.023728</td>
<td>0.012545 0.02213</td>
<td>0.012378 0.021413</td>
<td>0.012368 0.021329</td>
</tr>
<tr>
<td></td>
<td>0.007382 0.015359</td>
<td>0.006642 0.013302</td>
<td>0.006401 0.01238</td>
<td>0.006384 0.012271</td>
</tr>
<tr>
<td></td>
<td>0.005058 0.011847</td>
<td>0.003743 0.008735</td>
<td>0.003314 0.007343</td>
<td>0.003284 0.007177</td>
</tr>
<tr>
<td>3</td>
<td>0.012161 0.023085</td>
<td>0.011466 0.02134</td>
<td>0.011186 0.020517</td>
<td>0.011116 0.02041</td>
</tr>
<tr>
<td></td>
<td>0.007638 0.015548</td>
<td>0.006704 0.013345</td>
<td>0.006329 0.012306</td>
<td>0.006293 0.012173</td>
</tr>
<tr>
<td></td>
<td>0.005693 0.012301</td>
<td>0.004198 0.009065</td>
<td>0.003598 0.007537</td>
<td>0.003534 0.00734</td>
</tr>
<tr>
<td></td>
<td>0.003125 0.007185</td>
<td>0.002095 0.004765</td>
<td>0.001994 0.004453</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.01309 0.03242</td>
<td>0.00974 0.02567</td>
<td>0.006585 0.01725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.001311 0.022108</td>
<td>0.010153 0.020093</td>
<td>0.009655 0.019059</td>
<td>0.009581 0.018909</td>
</tr>
<tr>
<td></td>
<td>0.007909 0.01581</td>
<td>0.006708 0.013355</td>
<td>0.006096 0.012089</td>
<td>0.006006 0.011903</td>
</tr>
<tr>
<td></td>
<td>0.006452 0.013016</td>
<td>0.004755 0.009592</td>
<td>0.003891 0.00781</td>
<td>0.003763 0.007547</td>
</tr>
<tr>
<td>5</td>
<td>0.003875 0.007894</td>
<td>0.002561 0.005206</td>
<td>0.002367 0.004804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.001813 0.003721</td>
<td>0.001476 0.003048</td>
<td>0.000992 0.002045</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000702 0.001452</td>
<td>0.000571 0.001184</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2017 IAU, Arak Branch
Table 6
Central dimensionless deflection of 4-layer circular nano-plates under non-uniform shear and normal tractions (C=10^9, \(\hat{T} = \hat{q} = 10^8 \)).

<table>
<thead>
<tr>
<th>(a_0 = \beta_0 = 2)</th>
<th>(a_1 = \beta_1 = 1)</th>
<th>(a_2 = \beta_2 = 0)</th>
<th>Clamp</th>
<th>Simply support</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi^{(1)})</td>
<td>0.009392</td>
<td>0.008093</td>
<td>0.007281</td>
<td>0.006707</td>
</tr>
<tr>
<td>(\pi^{(2)})</td>
<td>0.01233</td>
<td>0.002041</td>
<td>0.002387</td>
<td>0.002565</td>
</tr>
<tr>
<td>(\pi^{(3)})</td>
<td>0.00149</td>
<td>0.000509</td>
<td>0.000797</td>
<td>0.001018</td>
</tr>
<tr>
<td>(\pi^{(4)})</td>
<td>2E-05</td>
<td>0.000151</td>
<td>0.000328</td>
<td>0.000503</td>
</tr>
<tr>
<td>(\pi^{(1)})</td>
<td>0.027404</td>
<td>0.021637</td>
<td>0.018777</td>
<td>0.017032</td>
</tr>
<tr>
<td>(\pi^{(2)})</td>
<td>0.008161</td>
<td>0.009864</td>
<td>0.010204</td>
<td>0.010273</td>
</tr>
<tr>
<td>(\pi^{(3)})</td>
<td>0.002385</td>
<td>0.004624</td>
<td>0.005818</td>
<td>0.006559</td>
</tr>
<tr>
<td>(\pi^{(4)})</td>
<td>0.000855</td>
<td>0.002677</td>
<td>0.004002</td>
<td>0.004939</td>
</tr>
<tr>
<td>(\pi^{(1)})</td>
<td>0.004696</td>
<td>0.004045</td>
<td>0.00364</td>
<td>0.003353</td>
</tr>
<tr>
<td>(\pi^{(2)})</td>
<td>0.000616</td>
<td>0.001021</td>
<td>0.001194</td>
<td>0.001283</td>
</tr>
<tr>
<td>(\pi^{(3)})</td>
<td>7.47E-05</td>
<td>0.000254</td>
<td>0.000399</td>
<td>0.000509</td>
</tr>
<tr>
<td>(\pi^{(4)})</td>
<td>9.97E-06</td>
<td>7.56E-05</td>
<td>0.000164</td>
<td>0.000251</td>
</tr>
<tr>
<td>(\pi^{(1)})</td>
<td>0.013704</td>
<td>0.010816</td>
<td>0.009388</td>
<td>0.008516</td>
</tr>
<tr>
<td>(\pi^{(2)})</td>
<td>0.004079</td>
<td>0.004933</td>
<td>0.005102</td>
<td>0.005136</td>
</tr>
<tr>
<td>(\pi^{(3)})</td>
<td>0.001191</td>
<td>0.002313</td>
<td>0.002909</td>
<td>0.00328</td>
</tr>
<tr>
<td>(\pi^{(4)})</td>
<td>0.000426</td>
<td>0.001339</td>
<td>0.002002</td>
<td>0.002469</td>
</tr>
</tbody>
</table>

Table 7
Dimensionless deflection of 6-layer annular nano-plates at \(r=3.5 \) nm under non-uniform shear and normal tractions (C=10^9, \(r_i=2\)nm, \(r_o=5\)nm, \(\hat{T} = \hat{q} = 10^8 \)).

<table>
<thead>
<tr>
<th>(a_0 = \beta_0 = 1)</th>
<th>(a_1 = \beta_1 = -1)</th>
<th>(a_2 = \beta_2 = 2)</th>
<th>S-C</th>
<th>S-S</th>
<th>C-C</th>
<th>F-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi^{(1)})</td>
<td>0.008166</td>
<td>0.007007</td>
<td>0.006286</td>
<td>0.005773</td>
<td>0.005069</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(2)})</td>
<td>0.001568</td>
<td>0.002143</td>
<td>0.002365</td>
<td>0.002461</td>
<td>0.002513</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(3)})</td>
<td>0.002999</td>
<td>0.000659</td>
<td>0.000899</td>
<td>0.0001063</td>
<td>0.001266</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(4)})</td>
<td>5.7E-05</td>
<td>0.000204</td>
<td>0.000345</td>
<td>0.000466</td>
<td>0.000653</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(5)})</td>
<td>1.09E-05</td>
<td>6.4E-05</td>
<td>0.000138</td>
<td>0.000216</td>
<td>0.00036</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(6)})</td>
<td>2.47E-06</td>
<td>2.5E-05</td>
<td>6.93E-05</td>
<td>0.000124</td>
<td>0.000243</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(1)})</td>
<td>0.016494</td>
<td>0.013477</td>
<td>0.011776</td>
<td>0.010641</td>
<td>0.009184</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(2)})</td>
<td>0.005288</td>
<td>0.006007</td>
<td>0.006089</td>
<td>0.006021</td>
<td>0.005799</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(3)})</td>
<td>0.001683</td>
<td>0.00267</td>
<td>0.003152</td>
<td>0.003423</td>
<td>0.003701</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(4)})</td>
<td>0.000537</td>
<td>0.001198</td>
<td>0.00166</td>
<td>0.001993</td>
<td>0.002437</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(5)})</td>
<td>0.000176</td>
<td>0.000566</td>
<td>0.000934</td>
<td>0.001245</td>
<td>0.001724</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(6)})</td>
<td>7.14E-05</td>
<td>0.000333</td>
<td>0.000639</td>
<td>0.000926</td>
<td>0.001404</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(1)})</td>
<td>0.005395</td>
<td>0.004353</td>
<td>0.004044</td>
<td>0.003604</td>
<td>0.005395</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(2)})</td>
<td>0.000713</td>
<td>0.0013</td>
<td>0.001405</td>
<td>0.001503</td>
<td>0.000713</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(3)})</td>
<td>9.27E-05</td>
<td>0.000392</td>
<td>0.000495</td>
<td>0.000638</td>
<td>9.27E-05</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(4)})</td>
<td>1.2E-05</td>
<td>0.000119</td>
<td>0.000176</td>
<td>0.000275</td>
<td>1.2E-05</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(5)})</td>
<td>1.57E-06</td>
<td>3.68E-05</td>
<td>6.47E-05</td>
<td>0.000125</td>
<td>1.57E-06</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(6)})</td>
<td>2.29E-07</td>
<td>1.41E-05</td>
<td>2.97E-05</td>
<td>7.07E-05</td>
<td>2.29E-07</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(1)})</td>
<td>0.020636</td>
<td>0.019284</td>
<td>0.018173</td>
<td>0.017261</td>
<td>0.015789</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(2)})</td>
<td>0.010424</td>
<td>0.010633</td>
<td>0.01068</td>
<td>0.010651</td>
<td>0.010498</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(3)})</td>
<td>0.005742</td>
<td>0.006067</td>
<td>0.006336</td>
<td>0.00654</td>
<td>0.006825</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(4)})</td>
<td>0.003296</td>
<td>0.0036</td>
<td>0.003887</td>
<td>0.00414</td>
<td>0.004569</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(5)})</td>
<td>0.002039</td>
<td>0.002308</td>
<td>0.002571</td>
<td>0.002819</td>
<td>0.003275</td>
<td></td>
</tr>
<tr>
<td>(\pi^{(6)})</td>
<td>0.001506</td>
<td>0.001753</td>
<td>0.001997</td>
<td>0.002233</td>
<td>0.002688</td>
<td></td>
</tr>
</tbody>
</table>
5 CONCLUSIONS

The bending analysis of MLGSs is studied within the framework of the nonlocal Mindlin’s plate theory and by using Hamilton’s principle. The external load of MLGS is considered to be non-uniform in both shear and normal directions. It is found that in the MLGSs, unlike SLGSs, nonlocal parameter has a decreasing effect on deflection of first layer whereas this parameter has an increasing effect on other graphene layers. Furthermore, obtained results show that vdW interaction forces have considerable effects in the bending behavior of MLGSs and based on the distance of graphene layers, the equal constant of these forces should be suitably chosen. Several tapes of boundary conditions are examined and effect of them is obtained.

REFERENCES

© 2017 IAU, Arak Branch

