تأثیر کود شیمیایی و زیستی نیتروزندار بر ساخت کمی و کیفی


MENTHA PIPERITA L.

مهدی عقیقی شاهوردویی، دانشجوی دکتری فیزیولوژی گیاهان زراعی، دانشکده علوم کشاورزی، دانشگاه شهید نیاوران

چکیده

جهت بررسی تأثیر کود شیمیایی اوره و زیستی نیتروزکین بر خصوصیات گیاهی نعع فلفلی آزماشی به صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در سه تکرار به اجرا درآمد. عوامل آزمایش شامل کود شیمیایی نیتروزندار در سطح صفر (شاف)، 100 و 200 کیلوگرم اوره در هکتار، کود زیستی نیتروزکین در دو سطح عدم تلفیح و تلفیح کود زیستی (4 لتر در هکتار) و زمان برداشت در سه سطح برداشت قبل از گلدهی، همزمان با گلدهی و بعد از گلدهی بودند. نتایج نشان داد اثر کود اوره، کود زیستی، زمان برداشت و اثرات متقابل دوگانه و سه‌گانه این تیمارها بر عملکرد ماده نازه و خشک، ارتفاع بوته و درصد و عملکرد اساسی و شاخص برداشت میترای بود. بیشترین عملکرد ماده خشک (500 کیلوگرم در هکتار)، شاخص برداشت (67/7)، درصد و عملکرد اساسی (به ترتیب 7/6 و 35/2 کیلوگرم در هکتار) در کاربرد 200 کیلوگرم کود اوره به همراه استفاده از کود زیستی نیتروزکین در برداشت همزمان با گلدهی بدست آمد. کاربرد کود زیستی نیتروزکین (4 کیلوگرم در هکتار) در برداشت همزمان با گلدهی سپ افزایش عملکرد کمی و کیفی گیاه نعع فلفلی گردید. بهطور کلی نتایج این تحقیق حاکی از اثرات مثبت کود زیستی نیتروزکین بر گیاه دارویی نعع فلفلی از طریق تثبیت نیتروزون می‌باشد.

واژه‌های کلیدی: اوره، نیتروزکین، اساس، نعع، شاخص برداشت

E-mail: amini@shahed.ac.ir

نویسنده مسئول: 

تاریخ دریافت مقاله: 95/7/25 
تاریخ پذیرش مقاله: 95/1/25
مقامه

بیانات های نوین کشاورزی، سال دهم، شماره ۲، زمستان ۱۳۹۴

گیاهان دارویی از ارزش و اهمیت خاصی در تأمین بهداشت و سلامت جوامع به لحاظ درمان و
پیشگیری از بیماری‌ها برخوردار بوده و هستند. در حال حاضر، ۲۵٪ از داروهای موجود منشأ گیاهی
دارند و ۱۲٪ داروها از منابع میکروبه ساخته شده‌اند. گرایش عمومی جامعه به استفاده از داروها و
داروهای گیاهی و به طور کلی فراورده‌های طبیعی به ویژه در طی سال‌های اخیر رو به افزایش بوده
است. مهم‌ترین علی‌آن، اثبات اثرات مخرب و جانبی داروهای شیمیایی از یک طرف و ایجاد
آلودگی‌های زیست محیطی از طرف دیگر کره زمین را تهدید می‌کنند. می‌تواند از (۲) و (۱۴) تناز
یکی از مهم‌ترین گونه‌های خانواده نعناع می‌باشد. این گیاه با داشتن
اساسن روغنی و ترکیب‌های شیمیایی مهم امروزه یکی از ارزش‌نماینده‌گیاهان دارویی جهان محسوب
می‌شود.

نعناع فلسفی‌های روغنی فراور است که مهم‌ترین آنها شامل مانند، مینتو و می‌توان است "می‌باشد" (۴)
و (۲۴). سایر ترکیباتی که در اساسن این گیاه باید می‌شود، شامل فلاونوئیدها، پلی فنولهای پلیمریزه
شد، کاروتئن، توتوروفل، بنانین و کولین می‌باشد (۴). یکی از فراورده‌های نعناع، اساسن آن است که از
تقظیر برگ و سرشاخه‌های گل‌دار نعناع تحت اثر بخار آب تهیه می‌شود و دارای ۵۰ تا ۷۰٪ می‌باشد. این گیاه دارای حدود ۱٪ اساسن بوده که قسمت عضله آن را کاروان، دی هیدروکارون و مانند
تشکیل می‌دهد. فلاونوئیدها، آن کورسیرین، لوتولین، (۷-گلکوکوزید، ۷-روتینوئید، ۷-گلکورونید،
آپی زنی، ۷-گلکورونید اکستین، ۷-روتینوئید، دیوسیسین، هسپردسین، اربودیکتیبول، ۷-روتینوئید،
هیدرو‌سیسین می‌باشد (۱۲).

کاربرد صحیح و مناسب عناصر و مواد غذایی در طول مراحل کاشت، داشت و برداشت گیاهان دارویی،
به‌عنوان نقش عمده‌ای در افزایش عملکرد دارد. بکر در کمیت و کیفیت مواد مؤثر آنها نیز مؤثر است
نیتروژن یکی از عناصر مهم برای رشد گیاهان دارویی و افزایش اساسن می‌باشد. با اینکه نیتروژن در
ساختاری اساسن وجود ندارد اما کاربرد آن به افزایش گذر ترشحی اساسن در گرگ نعناع فلسفی منجر
می‌شود (۱۰). علت افزایش گذر ترشحی اساسن تولید و مصرف فن‌ده‌های ساده و در نتیجه توسعه بیشتر
سطح برگ و تولید ترکیبات اولیه بیشتر جهت تولید اساسن است. همچنین نیتروژن باعث تداوم رشد
روشی، توسعه برگ‌ها دارد قسمت این فسفر دار بر روی نعناع فلسفی اثر مثبتی داشته و موجب افزایش سرشاخه‌های
گل‌دار آن شد. مهم‌ترین مقدار اساسن در سرشاخه‌های گل‌دار بیش از برگ‌ها و فراورده کودن نیتروژن
دار روند مثبتی را در خانواده اساسن برگ و هم اساسن سرشاخه‌های گل‌دار به همراه داشته است (۷).
در مطالعه‌های دیگری تأثیر نیتروژن بر برخی شاخه‌های رشد و میزان اساسن در نعناع فلسفی نشن داده


شد که در شرایط کاربرد ۲۰۰۰ کیلوگرم نیتروژن خالص در هکتار بالاترین درصد اساس در برگ و کل
بوته به ترتیب با میانگین‌های ۲/۸۳ و ۰/۷۶ (٪) به دست آمد (۱). برخی محققین نیز با کاربرد سطوح
مختلفی از کود نیتروژن رون داره نمایه گزارش دادند کوددهی موجب افزایش میزان منتو اساس در
مقاومه با عدم کوددهی می‌شود (۷۲).

کودهای بیولوژیک شامل میکروارگانیسم‌ها و متابولیت آنها می‌باشد که قادر به بالا بردن حاصل خیزی
خاک، افزایش رشد گیاه و عملکرد محصول هستند. همچنین این میکروارگانیسم‌ها قادر به آماده‌سازی
عناصر معدنی از حالی بیشتر جذب به قابل جذب در طی فرآیند بیولوژیکی می‌باشند (۱۸). تحقیقات
گسترده‌ای برای شناخت کارایی و نحوه اثر کودهای زیستی در رشد، عملکرد و تولید اساس گیاهان
دارویی آغاز شده است. کوشکی و همکاران (۱۳۷) گزارش دادند کاربرد کودهای زیستی مانند
نیتروکسین، سوپر نیتروپلاس و باکتری‌های حل کننده فسفات نفس می‌کند و مؤثری در بهبود ویژگی‌های
رشد، عملکرد اندام هوابی و خصوصیات کیفی و اساس گیاه دارویی نمایه فلفلی دارد (۱۸). عینالی‌مقدم و
همکاران (۲۰۰۹) در تحقیقی بر روی سه نوع نمایه گزارش کرده که مصرف کودهای زیستی
آزوسپریلین و ازوتوباکترات مشهور به رشد و عملکرد کیفی این گیاهان دارند. تأثیر کود شیمیایی و
زیستی نیتروژن (نیتروکسین) بر عملکرد کمی و کیفی زعفران مورد بررسی قرار گرفت که با اعمال مقادیر
مختلف کود شیمیایی اوره و کود زیستی عملکرد کلاته و خامه افزایش قابل توجهی یافت (۱۵). همچنین
در بررسی تأثیر کودهای زیستی بر عملکرد کمی و کیفی گیاه دارویی با نامه آلمانی اثر کودهای زیستی
نیتروکسین (حقای ازوتوباکترات) باکتری‌های حل کننده فسفات، مخلوط کود زیستی نیتروکسن و
باکتری‌های حل کننده فسفات و تیمار شاهد بر روی یابونه آلمانی آزمایش شد که تیمارهای مورد بررسی
ائم عالی‌دایر بر صفات کمی و کیفی داشت (۱۱).

مهر آفرین و همکاران (۱۳۹۰) گزارش نمودند تیمارهای کودی بر ارتفاع گیاه، وزن نر و خشک ساقه در
هکتار، وزن خشک برگ در هکتار و مقدار متوسط اساس، بر تعداد برگ در ساقه، وزن نر و خشک برگ
در ساقه، عملکرد اساس در واحد سطح و مقدار متوسط اساس نمایه فلفلی اثر معنی‌داری داشتند. تغذیه
گیاه عامل مهمی در رشد و ترکیبات شیمیایی گیاهان است. کاربرد کودهای طبیعی می‌تواند عملکرد و
شناخته‌های دارویی گیاهان را ارتقاء بخشید. کودهای زیستی می‌توانند کاهنگری و یا به‌عبارت کاهش
مصرف کودهای شیمیایی در اکوسیستم‌های زراعی شوند که گامی در راستای به حداکثر رساندن آلودگی
محیط و کشاورزی پایدار است. هدف از اجرای این طرح با توجه به کم کردند کودهای شیمیایی در
جهت کشاورزی پایدار است تا بنوان با حداکثر استفاده از کودهای شیمیایی به عملکرد کمی و کیفی
مطلب دست یافته.
مواد و روش‌ها

این تحقیق در سال ۱۳۹۱ در سراسر ایران انجام شد. به صورت آزمایش فاکتوریل در قالب طرح ۱/۱ با بلوک‌های کامل تصادفی با ۱۸ نمونه در ۳ تکرار انجام شد. فاکتورهای آزمایش شامل کود اوره در سه سطح صفر، ۱۰۰ و ۲۰۰ کیلوگرم در هکتار (کد زیستی در دو سطح مصرف به صورت سری همراه با آب آبادی و عدم مصرف و تاریخ برداشت در سه سطح برداشت قبل از گلدهی، زمان گلدهی و بعد از گلدهی نعناع فلسفی بود.

کود زیستی نیتروژن تلفیقی از دو باکتری ازوباترک (کروکوکوم) و آئوسپیلیوم برایلینس بوده با نام ۱۰۰ CFU تجاری نیتروکسین به میزان ۴ لیتر در هکتار (دارای ۱۰۰ سولو زنده در هر میلی لیتر) به صورت سرک در دو مرحله ۰ و ۵۰ روز بعد از کاشت، براساس توصیه شرکت تولید کننده، استفاده شد (۱۸). در اواخر فصل‌های نهایی نعناع فلسفی جداسازی شده و به عنوان اصلی که خاک آن در ایران خاصیت شیمیایی و فیزیکی ارائه شده در جدول ۱ بود. منچلی و به فاصله ۴۰۰ کاشته شدند. کود اوره به صورت سرک و در سه مرحله یک سوم قبل از کاشت در حین خشک، یک سوم در اواخر ارتباط ماه (در مرحله رویشی) و مابقی در اواخر خردسال ماه اعمال شد. عملیات نمونه‌برداری در هر کرت از تعداد ۱۰ بونه و از ارتفاع ۱۵ سانتی‌متری صورت گرفت. نمونه‌های جمع آوری شده در دمای ۷۵ درجه سانتی‌گراد به مدت ۴۸ ساعت قرار داده شدند.

جهت اساسی گیری نمونه‌ها، مقدار ۵۰ گرم از نمونه خشک شده و پودر شده را همراه با ۲۰۰ میلی لیتر آب مقطر درون بالن دستگاه کلونجر ریخته و اساسی گیری انجام شد و در نهایت جهت جداسازی آب از اساسی از اسکورت ۵۰ درصد اساس سر از حاصل ضرب درصد اساس در عملکرد اندازه‌گیری Na۲SO۴ استفاده شد (۲۵). عملکرد اساسی از حاصل ضرب درصد اساس در عملکرد اندازه‌گیری Na۲SO۴ هواپیمای ارساس رابطه ۱ محاسبه شد (۹). شاخه‌برداشت از تکمیل عملکرد ارضی (برگ) بر عملکرد بیولوژیکی (کل اندام غیاب) محاسبه‌گر دیدگاه (رابطه ۲) (۱۰). جهت تجزیه و تحلیل داده‌های به دست آمده از نرم‌افزار آماری SAS و برای ترسیم نمونه‌ها از نرم‌افزار Excel استفاده شد. مقایسه میانگین‌های Excel صفات مورد نظر توسط روش آزمون چند دامنه‌ای دانکن در سطح ۵/۰ صورت گرفت.

عملکرد اندازه‌گیری درصد اساس = عملکرد اساسی/عملکرد بیولوژیکی (یا عملکرد ارضی)

۱- Azethobacter chroococcum
۲- Azospirillum brasilense
جدول ۱: مشخصات مکانی و اقلیمی مزرعه محل آزمایش (سازمان هواشناسی کل کشور) ۱۳۹۱

<table>
<thead>
<tr>
<th>میانگین دما</th>
<th>میانگین بارش</th>
<th>حداکثر دما</th>
<th>حداقل دما</th>
</tr>
</thead>
<tbody>
<tr>
<td>سالانه (میلی‌متر)</td>
<td>سالانه (میلی‌متر)</td>
<td>(درجه سانتی‌گراد)</td>
<td>(درجه سانتی‌گراد)</td>
</tr>
<tr>
<td>۲۳.۶</td>
<td>۱۲.۸</td>
<td>۴۸.۵</td>
<td>۲.۲</td>
</tr>
</tbody>
</table>


جدول ۲: آنالیز فیزیکی و شیمیایی خاک محل آزمایش از عمق صفر تا ۳۰ سانتی‌متر

<table>
<thead>
<tr>
<th>خصوصیات فیزیکی خاک</th>
<th>نسبت فشار کابل</th>
<th>فشار کابل</th>
<th>نسبت قابل</th>
<th>فشار قابل</th>
<th>درصد جذب (سی)</th>
<th>درصد جذب (سی)</th>
<th>درصد جذب (سی)</th>
<th>درصد جذب (سی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>(سی)</td>
<td>(بی)</td>
<td>(میلی‌گرم بر کیلوگرم)</td>
<td>(بی)</td>
<td>(میلی‌گرم بر کیلوگرم)</td>
<td>(بی)</td>
<td>(میلی‌گرم بر کیلوگرم)</td>
<td>(بی)</td>
</tr>
<tr>
<td>سه‌شانس بر اشیاء</td>
<td>0.۲</td>
<td>۰.۴</td>
<td>۳۴</td>
<td>۲۹</td>
<td>۲۴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>۶.۵</td>
<td>۷.۵</td>
<td>۵.۷</td>
<td>۴.۶</td>
<td>۴.۶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC (دم)</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>EC (بی)</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>


نتایج و بحث

ارتفاع بوته

نتایج تجزیه و تحلیل نشان داد که بیماری، زیستی و زمان برداشت اثرات متغیر در نظر گرفته شده است (کود زیستی × شیمیایی، کود زیستی × تاریخ برداشت و کود شیمیایی × تاریخ برداشت و سه‌گانه (کود شیمیایی × کود زیستی × تاریخ برداشت) این عوامل بر ارتفاع بوته نفعاً فعال اثر مالی‌داری داشتند.

جدول ۳: بیشترین ارتفاع بوته از کاربرد ۲۰۰ کیلوگرم در هکتار کود اوره با تغییر کود زیستی

نیتروژن و برداشت در قبل و بعد از گل‌های به ترتیب ۵۱ و ۵۰ سانتی‌متر بود (جدول ۴).

محققین گزارش کردند استفاده از کود زیستی نیتروژن باعث ترشح ویسکوزی واژد در گیاه می‌شود و این موضوع به‌طور مستقیم یا غیر مستقیم باعث ارتفاع گیاه می‌گردد (۱۶). تحقیق با کود زیستی و برداشت در زمان گل‌دهی بیشترین طول بوته را با ۲۴/۷۵ سانتی‌متر نشان داد. کمترین ارتفاع بوته از عدم مصرف کود اوره با عدم تغییر کود زیستی در تاریخ برداشت بعد از گل‌دهی (۲۹ سانتی‌متر) بود (جدول ۴). گیاهان مواج با کمیاب نیتروژن به‌کمک رشد می‌کند و بی‌گزار کیچکی داده که نسبت امر مربوط به نقش کلیدی عنصر نیتروژن در بسیاری از جمله و انفعالات و ساختارهای شیمیایی گیاهان است. نیتروژن یک عنصر اصلی در تشکیل پروتئین‌ها و آنزیم‌های هست. همچنین کم‌بود نیتروژن شاخص سطح برگ را کاهش می‌دهد و کارایی مصرف تابش و فعالیت فتوسنتزی گیاهان را کم کرده و از این طریق باعث کاهش رشد و بدن‌اندیان که داشت ارتفاع بوته نیز می‌گردد (۱۳). این رو گلدیه بیکی از مراحل حساس رشدی گیاه بوده که انرژی بسیاری برای تکمیل این سیکل لازم است و عملی مواد ذخیره‌ی گیاه که بايد صرف تولید و افزایش مواد مؤثره گردد در این مراحل استفاده می‌شود و رشد رویشی گیاه
کاهش می‌یابد، ولی استفاده از کودهای زیستی با توجه به خاصیت تولید هورمون‌های محکر رشد و تثبیت نیتروژن این اثرات منفی را از بین میرود. روند افزایش با تغییر کود زیستی نیتروژن در ارتقاء بوته به خصوص در سطح کود شیمیایی 100 و 200 کیلوگرم در هکتار مشاهده شد. مکانیزاسیون و همکاران (1390) اثر کود شیمیایی اوره و کود زیستی را به ارتقاء بوته گیاه دارویی شوید 1 معنی‌دار گزارش کردن و بیان داشتن کاربرد کود شیمیایی به همراه کود زیستی بیشترین ارتقاء بوته را ایجاد کرد. یوسف و همکاران (2004) گزارش کرند که کود زیستی آروسپریلیوم و ازتوتیکر سبب افزایش ارتقاء بوته و وزن تر و شکل اندام هواپی گیاه می‌گردد. با ک باکتری‌های موجود در کود زیستی نیتروژن علاوه بر تثبیت نیتروژن هوا و متعادل کردن عناصر یک مرکب کویسف مورد نیاز گیاه ترکش اسید آمینه و انواع آنی بوته سبب می‌شود که بیشتر و سیدرفور را نیز به عده دارند و موجب رشد و توسعه ریشه و قسمت‌های هواپی گیاهان می‌شود (2).

جدول3: تجزیه و ارتباط اثر کود شیمیایی اوره و زیستی نیتروژن در صفات نعمر فلگی در تاریخ‌های مختلف برداشت

<table>
<thead>
<tr>
<th>صفات برداشت</th>
<th>میانگین مرتبه</th>
<th>منابع تغییر</th>
<th>ظرفیت تغییرات (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول بوته (cm)</td>
<td>0.683 ** 0.522</td>
<td>2</td>
<td>69</td>
</tr>
<tr>
<td>وزن تر (g)</td>
<td>0.791 ** 0.826</td>
<td>2</td>
<td>87</td>
</tr>
<tr>
<td>شاخه اصلی</td>
<td>0.848 ** 0.847</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>شاخه بارش</td>
<td>0.868 ** 0.967</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>عملکرد ماده</td>
<td>0.848 ** 0.847</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>عملکرد آن</td>
<td>0.791 ** 0.826</td>
<td>2</td>
<td>87</td>
</tr>
<tr>
<td>عملکرد اساس</td>
<td>0.522 ** 0.683</td>
<td>2</td>
<td>69</td>
</tr>
<tr>
<td>عملکرد استخا</td>
<td>0.683 ** 0.522</td>
<td>2</td>
<td>69</td>
</tr>
</tbody>
</table>

*، **: به ترتیب اختلاف معنی‌دار در سطح احتمال 1٪ و 5٪ و غیر معنی‌دار.
1- Anethum graveolens L.
2- Salvia officinalis
جدول ۴: مقایسه میانگین اثر مقاولی مهم‌ها بر عملکرد و اجزای عملکرد گیاه نتایج فلزی در تاریخ‌های مختلف برداشت

| کود برداشت | کود نیتروژین | کود یولوزین | کود بیولوژیک | کود گیاهی | کود تاریخ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lit.ha¹</td>
<td>Kg.ha¹</td>
<td>Kg.ha¹</td>
<td>Kg.ha¹</td>
<td>Kg.ha¹</td>
<td>Kg.ha¹</td>
</tr>
<tr>
<td>1/3/07</td>
<td>5/7</td>
<td>4/7</td>
<td>5/9</td>
<td>3/7</td>
<td>7/5</td>
</tr>
<tr>
<td>1/2/06</td>
<td>4/5</td>
<td>6/5</td>
<td>3/4</td>
<td>5/6</td>
<td>4/7</td>
</tr>
<tr>
<td>1/1/05</td>
<td>3/6</td>
<td>7/7</td>
<td>5/8</td>
<td>2/5</td>
<td>3/4</td>
</tr>
<tr>
<td>1/5/04</td>
<td>6/7</td>
<td>5/5</td>
<td>4/6</td>
<td>7/3</td>
<td>3/4</td>
</tr>
<tr>
<td>1/9/03</td>
<td>7/3</td>
<td>5/4</td>
<td>4/7</td>
<td>2/6</td>
<td>3/4</td>
</tr>
</tbody>
</table>

در هر ستون، جهت مشابه از لحاظ آزمون چند دامنه دانک در سطح احتمال ۵٪ اختلاف معنی‌دار آماری نداشته.

عملکرد ماده نازه

نتایج تجربه و اریانس نشان داد کاربرد کود شیمیایی، زمان برداشت و اثرات متقابل کود شیمیایی×کود زیستی، کود زیستی×زمان برداشت، کود شیمیایی×زمان برداشت و کود شیمیایی×کود زیستی×زمان برداشت بر روی عملکرد ماده تاریخ تأثیر معنی‌داری داشت (جدول ۴). بیشترین عملکرد ماده تاریخ در میان ۲۰۰ کیلوگرم در هکتار کود اوره در شرایط تلفیق با نیتروژین و برداشت همکن با گلدی (۱۲۰۰ کیلوگرم در هکتار) به‌دست آمد (جدول ۴). با توجه به اینکه زمین موردنظر چسبانده از درصد نیتروژن بسیاری پایین برخورد دارد، نابودین کاهش مصرف کود شیمیایی با استفاده از کود زیستی نیتروژین که مورد انتظار بود، حاصل نشد و علاوه بر این کود زیستی مبتی افزایش عملکرد و اجزای عملکرد نتایج فلزی قابل توجه بود. کود زیستی همانطور که جدول تجزیه و اریانس نشان می‌دهد،
عملکرد در شرایط سایه شکل

نتایج نشان داد کاربرد کود شیمیایی اوره، کود زیستی و زمان برداشت و اثرات متقابل دوگانه و سه‌گانه این عوامل با هم بر روی عملکرد وزن ماده شکل اثر می‌نماید (۱/۰۰ ≤ P≤ ۰/۱). بیشترین عملکرد وزن ماده شکل در کاربرد ۲۰۰ کیلوگرم در هکتر کود اوره به همراه تلفیق با کود زیستی نیتروزین در برداشت همزمان با گلدهی با میانگین ۵۵۰ کیلوگرم در هکتر بود (جدول ۱). کاربرد ۲۰۰ کیلوگرم در هکتر کود اوره نسبت به ۱۰۰ کیلوگرم در هکتر در برداشت حین گلدهی، افزایش درصدی و درصدی در برداشت قبل از گلدهی باعث کاهش همچنین عملکرد ماده شکل شد و این امر نشان دهنده این نتیجه است که زمان برداشت عامل بسیار مهمی هم از نظر تغذیه گیاهی و هم از نظر عملکرد تولیدی است. فراهم بودن آب و عناصر غذایی، رشد رویشی مطلوب گیاه را به دنبال داشته شرط اساسی جهت تولید عملکرد بالا، تولید ماده شکل بیشتر در واحد سطح می‌باشد. جنین به نظر می‌رسد استفاده از کودهای زیستی از طریق به‌هم‌توفیلیه‌های میکروبه خاک و تیکتومی سیستم ریشه‌ای باعث بهبود دسترسی و افزایش جذب عناصر غذایی و در نتیجه سبب افزایش تولید مواد فتوسنتزی و بهبود ماده شکل گیاهی در گیاه کرده‌های که در این مسئله به واقعیت افزایش عملکرد زیستی در نیتروزین ۷/۹ (بر پروبنیک خود مشاهده نمودند مصرف کودهای زیستی نیتروژین و نیتروزین سبب افزایش عملکرد زیستی در گیاه مزرعه شد.

عملکرد در شرایط کاربرد آن خشک

نتایج نشان داد کاربرد کود شیمیایی، کود زیستی، زمان برداشت و برهمکنش این عوامل با هم بر عملکرد آن خشک تأثیر منفی داری (۱/۰۰ ≤ P≤ ۰/۱). مقایسه میانگین اثر سه‌گانه کود شیمیایی×کود زیستی×زمان برداشت نشان داد (جدول ۴) بیشترین عملکرد آن خشک در کاربرد ۲۰۰ کیلوگرم کود
اوره به همراه تلقیح با کود زمینی نیترکسین و برداشت هم‌زمان با گلدهی با میانگین 515 کیلوگرم در هکتار بود. کمترین علائم ۵۰۰ خشک نیز در تیمار عدم کاربرد کود شیمیایی و زیستی در برداشت قبل از گلدهی با میانگین ۲۹۵ کیلوگرم در هکتار بدست آمد. زنبوری و همکاران (۱۳۹۳) بیشترین علائم اندام هوایی در هکتار را در مصرف ۱۰۰ کیلوگرم در هکتار کود نیترژن و در زمان شروع غنچه‌دهی گیاه نعاع فلسفی گزارش کردند. زنجیکاو و واسیل (۲۰۰۹) با بررسی اثر نیترژن و مرحله رشد و چین بر روی گیاه نعاع فلسفی گزارش کردند عملکرد بیوماس و اساسن در چهار اول بالاتر از چهار دوم بوده و به طور کلی کود نیترژن باعث افزایش بیوماس و عملکرد اساسن شده است.

شاخص برداشت

نتایج تجزیه واریانس داده‌ها نشان داد کاربرد کود اوره، کود نیترکسین، زمان برداشت کود اوره × کود نیترکسین، کود اوره × زمان برداشت، کود نیترکسین × زمان برداشت و اثر کود اوره × کود نیترکسین × زمان برداشت بر شاخص برداشت نعاع فلسفی تأثیر معنی‌داری داشت (جدول ۳). بطوریکه با کاربرد ۲۰۰ و ۱۰۰ کیلوگرم در هکتار کود اوره به همراه تلقیح با کود زمینی نیترکسین و در برداشت در چیز گلدهی بیشترین شاخص برداشت را به ترتیب با میانگین ۷۲ و ۷۱٪ داشتند (جدول ۴). کمترین شاخص برداشت مربوط به عدم استفاده از کود شیمیایی و زیستی و زمان برداشت بعد از گلدهی (۲۸٪) بود (جدول ۴). مکی‌زاده و همکاران (۱۳۹۰) اثر کود شیمیایی و زیستی را بر شاخص برداشت گیاه دارویی شوید معنی‌دار گزارش کردند بالاترین شاخص برداشت مربوط به تلقیح کود زیستی و شیمیایی اوره بود. حاجی آقایی کامرانی (۱۳۹۲) اثر کود نیترژن را بر شاخص برداشت نعاع فلسفی معنی‌دار گزارش کرد و بیشترین شاخص برداشت در استفاده از ۸۰ میلی‌گرم اوره در هر گلدان بود. تاکنون در زمان برداشت، ریزش برگ‌ها را با دلیل سایه‌ندازی بوته‌ها روی هم افزایش داده و موجب افزایش در شاخص برداشت گیاه خواهد شد (۹).

درصد اساسن

کاربرد کود شیمیایی، کود زیستی و اثر مختلف این دو و همچنین زمان برداشت و برهمکنش این سه عامل با هم بر درصد اساسن تأثیر معنی‌داری (P<0/01) داشتند (جدول ۳). به طوری که بیشترین درصد اساسن در کاربرد ۲۰۰ کیلوگرم در هکتار کود اوره به همراه کاربرد ۴ کیلوگرم کود نیترکسین در هکتار و برداشت هم‌زمان گلدهی با میانگین ۷/۶٪ بود (جدول ۴). کمترین درصد اساسن نیز در عدم کاربرد کود اوره و نیترکسین در برداشت بعد از گلدهی به دست آمد (جدول ۴).
شناستی و مطالعه عوامل تأثیر گزار محیطی و زراعی بر بهبود کمیت و کیفیت متابولیتهای ثانویه گیاهان داروی بهبود حائز اهمیت است. از آنگاه که انسان‌ها ترکیب‌های نرم‌تر و قوی‌تری را نیاز دارند و با توجه به این موضوع که حضور عنصری مانند نیتروژن و NADPH و ATP و کم شدنی بودن نیاز می‌باشد (26) لذا صرف کودهای شیمیایی و زیستی مویجه افزایش انسان‌ها، شیمیایی و زیستی مویجه افزایش انسان‌ها می‌شود. وسایلی و همکاران (1391) گزارش کردند بیشترین میزان انسان‌ها از تیمین نیتروکسین و سفاهت پارا 2 حاصل شد. منابع مختلف نیز به نقش منبت کودهای شیمیایی و مکروسکوپیسم‌ها در بهبود درصد و عملکرد انسان‌ها در اثر داشته‌اند که با تابع این تحقیق مطالب دارد. بر اساس پژوهش‌های انجام شده صناعه معدنی و مواد آلی علاوه بر تحقیق رشد و نمو سبب تغییر در فعالیت‌های متابولیکی گیاهان دارویی می‌شود. از بین این عوامل نیتروژن به شکل اولیه علاوه بر آفزایش تولید برق، وزن خشک برق و کربوهیدرات‌ها افزایش سنتز انسان‌ها را نیز در گیاهان تهیه نعناع به دنبال دارد. وینگنا (2005) گزارش کرد کاربرد بهتری با بسیار زیاد روز گیاه ریحان سبب افزایش عملکرد انسان و زیستی توسعه ریحان شد و میزان انسان‌ها گیاه دو برابر افزایش داد. اکلاطوئی (2005) گزارش نمود مقدار و ترکیب انسان به مقدار زیادی به مرحله نموی گیاه، زمان برداشت و تغذیه گیاه نعناع فلسفی است. دارم‌های پیشین کرد برداشت زده‌گذاشته و دیر مهج نمک به کاهش عملکرد برگ‌ها و عملکرد انسان‌ها خواهد شد. کمترین کیفیت انسان‌های زمانی بسته می‌آید که گیاه در مرحله پیش از گل‌دهی و از بخش‌های جوان گیاه به‌دست آید (9).

عملکرد انسان

اثر کود شیمیایی، کود زیستی، زمان برداشت، اثر متقابل کود شیمیایی × کود زیستی، کود شیمیایی × زمان برداشت، کود زیستی × زمان برداشت و کود شیمیایی × کود زیستی × زمان برداشت بر عملکرد انسان معنی‌داری دارند (جدول 2). بیشترین عملکرد انسان در کاربرد ۱۰۰ و ۲۰۰ کیلوگرم کود اوره به همراه استفاده از کود زیستی نیتروکسین و برداشت چهار گلدنه (به ترتیب ۲۰۲۵ و ۲۰۴۲ کیلوگرم در هكتار) بود (جدول 4). این امر نشان داد افزایش کود نیتروکسین در هر دهه به تقلیف کود زیستی باعث افزایش انسان در پیره روش‌های نعناع فلسفی می‌شود. در پژوهش انجام شده توسط فلسفی و همکاران (1388) مشخص شد بیشترین عملکرد انسان گیاه دارویی با بانوی آلمانی در تیمین زیستی حل کننده فسفات و نتروسیمین (تلقیف آزوپیریلیم) تولید شد. شکرخی و همکاران (2012) نیز دریافت گرد کود زیستی نیتروکسین (تلقیف آزوپیریلیم) سبب افزایش معنادار عملکرد انسان در گل همیشه به‌هار 1.

شدا رضایی چیانه و همکاران (1393) نشان داد کاربرد کودهای زیستی منجر به افزایش معنادار انسان 2.

1. Matricaria Chamomilla L.
2. Calendula officinalis
نتیجه‌گیری
نتایج نشان داد استفاده از کودهای شیمیایی اورد و زیست نتیجه‌گیری می‌تواند عملکرد پیکره روی‌شی و تولید اساس گیاه نعنا فلفلی را افزایش دهد.

بهرتین زمان برای برداشت گیاه دارویی نعنا فلفلی، برداشت هم‌زمان با گلدهی است که هم عملکرد روی‌شی و هم عملکرد اساس در بالاترین میزان می‌باشد. همچنین کاربرد کودهای بیولوژیک نش می‌تواند در بهبود ویژگی‌های رشد و عملکرد گیاه و خصوصیات کیفی گیاه دارویی نعنا فلفلی دارد.

بنا بر این با نظر می‌رسد استفاده از کودهای زیستی می‌تواند اثرات سودمندی از جنبه‌های اقتصادی، اجتماعی و زیست محیطی داشته باشد و به عنوان گزینه‌ای مناسب در راستای تیل به اهداف کشاورزی پایدار در تولید گیاهان دارویی منظر قرار گیرد.

منابع

1. ایزدی، ز، احمدوند، گ، اثنی عشری، م، و پری، خ.1387. تأثیر نیتروژن بر برخی شاخص‌های رشد و میزان اساس در نعنا فلفلی (Mentha piperita L.). گربه‌پروران (1):122.

2. آقاجانی، م، و ایرانی، ن.1392. تغییرات عملکرد زراعی و فیتوشیمیایی گیاه دارویی سرخارگل (Echinacea purpurea L. Moench) تحت تأثیر اوره و کود زیستی. فصلنامه گیاهان دارویی. 12 (4):123-121.

3. حاجی آقانی، م. پاکتی، م، خوش‌شک، ح، و جاجی آقانی کامرانی، س.1392. بررسی اثر کود نیتروژن بر صفات و اساس در نعنا فلفلی (Mentha piperita L.). هماشی ملی گیاهان دارویی. دانشگاه آزاد اسلامی واحد علوم و تحقیقات آتیه‌آمی. لمبی.

4. حیدری، ف.1390. ریزازدادی سه گونه نعنا و تعیین ثبات زننگی آنها پایان‌نامه کارشناسی ارشد دانشگاه کشاورزی دانشگاه محقق اردبیلی. ص:105.

5. حیدری، ف، زانتین سالمان، س، جوان‌شهری، ع، و دادور، م.1387. تأثیر تراکم بوته بر عملکرد و تولید اساس کود دارویی نعنا فلفلی. علوم و فنون کشاورزی و منابع طبیعی. 12 (45):501-510.
7- رسته‌ی آلواسی (Cuminum cyminum L.) نشان دهنده این که این گیاه دارای میره‌ای باشد. نشریه بومشناختی کشاورزی. 5(112):105-110.
8- رسته‌ی آلواسی (Cuminum cyminum L.) نشان دهنده این که این گیاه دارای میره‌ای باشد. نشریه بومشناختی کشاورزی. 5(112):105-110.
10- سرده‌نامه، غ. و کوچکی، ع. 1388. فیزیولوژی گیاهان زراعی (ترجمه) انتشارات جهاد دانشگاهی مشهد. ص: 100.
11- فلاحت، ج. ح. و روستایی، م. 1388. بررسی تأثیر کود پیلوژیک بر عملکرد گیاههای کمی و کیفی گیاه داروی بابونه‌ای آلمانی. مجله پژوهش‌های زراعی ایران 7(125):107-123.
12- بهمنرود، ر. 1387. فرم‌کندی ایران. انتشارات گنج‌ها و مراکز. ص:378.
13- کامکار، ب. صفا‌نامه لنگرودی، ع. و محمدی، ر. 1390. کاربرد مواد معدنی در تغذیه گیاهان زراعی. انتشارات گیاه دانشگاهی مشهد. ص:500.
14- کوچکی، ع. و سیروی، ل. و گباشی، ر. 1387. ارزیابی آثار کودهای پیلوژیکی بر وزن گیاهی رشد، عملکرد و خصوصیات کیفی گیاه دارویی فلوژات. (Hyssopus officinalis). مجله پژوهش‌های زراعی ایران 6(132):127-139.
16- میثمی، ع. و بوسنی فریاد، م. 1392. اثرات شیوه مصرف کود پیلوژیکی نیتروسیسین بر عملکرد و اجرای عملکرد گل‌گونگی، در حضور EDTA، اکسیژن‌پذیری گیاه. (13(5):37-94.
17- کوچکی، ف. و چندگانه، م. غ. و خواجگریز، ع. 1390. ارزیابی اثر کودهای زیستی و شیمیایی نیترژن بر رشد، عملکرد و تأثیر زیستی و اکسیژن‌پذیری گیاههای کمی و کیفی گیاه دارویی (Anethum graveolens L.) نشان دهند که رشد کاهشی و تولید پایداری در صورت افزایش نرخ کود نیترژن.
18- مه‌آفرین، ع. و کوهن، ع. و خواجگریز، ع. و خرازی، ع. 1394. اثرات کودهای زیستی و شیمیایی نیترژن بر رشد، عملکرد و تأثیر اکسیژن‌پذیری گیاههای کمی و کیفی گیاه دارویی (Anethum graveolens L.) نشان دهند که رشد کاهشی و تولید پایداری در صورت افزایش نرخ کود نیترژن.
19- نجات‌زاده، ف. و سپهری، ی. 1391. تأثیر کودهای پیلوژیکی بر صفات مورفولوژیکی و فیزیولوژیک و میزان اکسیژن دارویی گیاه. فصلنامه علمی پژوهش‌های تحقیقات گیاهان دارویی و مغز ایران 48(2):47-78.
20- وابسته و همتک‌یار، ع. و سپهری، ی. 1391. تأثیر کودهای پیلوژیکی بر صفات مورفولوژیکی و فیزیولوژیک و میزان اکسیژن دارویی گیاه. فصلنامه علمی پژوهش‌های تحقیقات گیاهان دارویی و مغز ایران 48(2):47-78.


یبفشٝ ٞبی ٘ٛیٗ وكبٚضظی، ؾبَ
زٞٓ، قٕبضٜ 2
ظٔؿشبٖ 1394
96