بررسی کشنده آب ساکن در ناحیه‌ی غوطه وری جریان‌های غلیظ

داربوش کریم جمهوری اسلامی ایران، مهندس شرکت مهندسی مشاور در ابراز، اهواز، خوزستان، ایران.

1) کارشناسی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
2) استادیار، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
3) دانشجوی کارشناسی ارشد، دانشگاه شهید چمراه، گروه سازه‌های آبی، اهواز، ایران

نویسنده مسئول: Kdariush44@yahoo.com

تاریخ دریافت: 25/12/90

تاريخ پذیرش: 8/3/91

چکیده

بررسی نحوه تأثیر مختلف کیفیت آب رودخانه بر دریاچه‌ها و مخازن سد‌ها به‌همراه اثر به‌همراه که بهره برداری حیات اهمیت است. هنگام ورود آب به دریاچه‌ها از جدی‌ترین مسائل به‌شمار می‌آید. این پس از ورود به دریاچه با مخازن سد به‌دست می‌آید. این مطالعه به‌وسیله بررسی رفتار فرسایش و روس‌گذاری و مدیریت آن در مخازن مخازن سد از این نظر به‌نظر می‌رسد که آب ساکن توسط جریان غلیظ می‌پیامده در تحقیق حاضر کشنده ناحیه‌ی غوطه‌وری این جریان‌ها، تحت تأثیر غلظت جریان ورودی، شبکه، خیابان‌های و ارتفاع آب ساکن توسط مدل فیزیکی محور تحقیق قرار گرفته است. آزمایش‌ها در یک فلز با طول 975 متر و عرض 50 سانتی‌متر و ارتفاع 80 سانتی‌متر در سه شبیه و جهان غلطت با دیبه مفتوا انجام شده، نتایج آزمایش‌ها حاکی از تأثیر مستقیم شبکه بر میزان کشنده‌ای است که آب ساکن در ناحیه غوطه‌وری می‌باشد.

واژه‌های کلیدی: جریان غلیظ، ناحیه‌ی غوطه‌وری، عدد ریچاردسون، کشنده آب ساکن، مدل فیزیکی.
مقدمه

معدل رسوپ گذاری همواره به عوامل مهم ترین عامل کوتاه گردن عمر متفاوت سده مانند ماست و سدیهای مختلین زیبایی بدلیل پیشین از رسوپ میتوکوندرو ایجاد شده است. انعکاسی به ویژه در مناطق استوایی و نیمه خشک به علت بالاتواندی بیاریجان رسوپ مشاهده می‌شود. به نظر می‌رسد اهمیت فاصله عمر متفاوت سده و حفظ حجم ذخیره آنها برای تخلیه کنترل و بهره‌برداری از منابع آب، به عنوان موضوع مهم در علم مهندسی سداسازی مطرح می‌باشد. در حال حاضر بیشتر کارهای مدیریت رسوپ به طور کلی بر روی کنترل فرسایش منجر شده است. گرچه انجام این فعالیت‌ها لازم و ضروری به نظر می‌رسد، اما به نتایی نمی‌تواند برای نیل به اهدافی مانند حفظ تحلیل رسوپ و دزدی دراز مدت حجم ذخیره مختلین کافی باشد. بنابراین با توجه به اهمیت مسائل مدیریت پایای مختلین، لازم است حجم ذخیره مختلین را به وسیله ایجاد سهولت از دست رود از طریق روش‌های رسوپ زیانی حفظ و بازیاب ضروری و به‌طور خاص در اینجا روبش فدراسیون رسوپ، منجر کننده از انجام آن جلوگیری به عمل آید که در مورد ضروری بوده‌ها در رسوپ کننده در مخازن و نیز فرسایش کف در مخازن و در دریاها و افیان‌ها جریان غلافی است که باعث تأثیر این جریان‌ها در فرآیند رسوپ غلافی مخازن شناسایی شده و با شناخت پارامترهای مختلف این جریان نسبت به مدیریت رسوپ مخازن اقدامات موتور را انجام داد.

به طور کلی می‌توان گفت جریان‌های غلافی جریان‌های هستند که در اثر اختلال در جرم مختصات دو سیال به وجود می‌آیند. به عبارت دیگر زمانی که یک سیال یا جرم مختصات پیشین (ρ ≠ 0) به درون یک توپ سال ساکن با جرم مختصات جریان یابد، نفوذ جریان غلافی اتفاق می‌افتد. اگر جرم مختصات سیال ورودی بیشتر از جرم مختصات توپ ساکن باشد، جریان غلافی تحت شکل می‌گیرد. یک که به این جریان‌ها به علت تأثیر شناپ تقلوی اختلاف جرم مختصات جریان نقیش مهم گفته می‌شود.

با ورود یک جریان رسوپ در (سیال سبک‌تر) به محدود مختصین جریان‌های سبک‌تر، رسوپ‌ها حمل شده توسط جریان یابسته به این روند، صنفی سیال سبک‌تر، رسوپ‌ها حمایت شده توسط جریان پیوسته در سیال سبک‌تر و سینی‌تر می‌کنند. دراز درشت‌تر در اینجای ورود به مختصین تونسی شده، نتایی مختصین را تشکیل می‌دهد. دراز رزور به دلیل سرعت سیال سبک‌تر به قطع استرداد جریان به منظور پیشبرد به دلیل سرعت سیال سبک‌تر همچنان به پیشبرد خود در مختصین ادامه می‌دهد. تا جملی که سرعت به اتفاق یافته که اندازه حرکت جریان ورودی به نیروی فشاری ناشی از اختلاف جریان ورودی و آب ساکن به تعادل رسیده و مختصات جریان غلافی پس از این نقطه به زیر سطح آب ساکن رسیده و به حرکت خود ادامه می‌دهد. این نقطه را اصطلاحاً نقطه غوطه‌وری گوید.

جریان ورودی قبل از تشکیل جریان زیر گذر، تحت تأثیر مومنتات اتیست، ولی بعد از غوطه‌وری تحت تأثیر نیروی شاخصی می‌باشد. در صورت غوطه‌وری شدن جریان ورودی، حجم ثابتی از اب محیط در ناحیه انقباضی بین نواحی تحت تأثیر مومنتات و شاخصی وارد جریان می‌شود. به عبارت دیگر آب ساکن محیطی به درون جریان ورودی در ناحیه انقباضی به منظور جدا کردن از اختلاف مربوط به ناحیه تحت تأثیر شناپوری اختلاف مطلق می‌باشد. شکل ۱ رژیم‌های مختلف در جریان‌های غلافی زیر گذر (تحت‌انداز) را نشان می‌دهد. در فرآیند اختلاف در جریان غلافی، در ناحیه بندی آن با استفاده از مطالعه و بررسی آزمایشگاهی، در گذشته مورد توجه
فراوانی قرار گرفتن است (Fleenor W. E, 1981) در حالی که اختلال اولیه (اختلال در ناحیهٔ غوطه‌وری) که طبق مطالب انجام شده حتی تا 80 درصد از اختلال کل را تشکیل می‌دهد کمتر بررسی شده است (Ford and Johnson, 1981).

شکل 1: رژیم‌های مختلف در جریان‌های غوطه‌وری زیر گذر

اختلال در ناحیه‌ی غوطه‌وری با تغییر ناگهانی عمق چریان و رویدن ایجاد می‌گردد. بنابراین اختلال در ناحیه‌ی غوطه‌وری پیش از این که متاثر از تنگ برخی سیال و یا گرادیان دانسیته باشد، متاثر از چریان چرخشی است که با سقوط سیال سانگین در نقطه‌ی غوطه‌وری در سیال ساکن ایجاد می‌شود.

مشاهده و بررسی چریان‌های غوطه‌وری گلیظ که در طبیعت رخ می‌دهد بسیار مشکل و دارای مقياس بزرگ و است لذا شبیه‌سازی فیزیکی این یکدیده مطمئن‌ترین راهکار برای مطالعه آن می‌باشد.

در چریان گلیظ برخلاف چریان ماجرا روابز، تأثیر تقل موثر روی اختلال جرم مخصص اعلت حرکت می‌باشد در واقع سیال محیطی تاثیر کاهنده‌ای بر تقل دارد، رابطه شتاب تقل موثر بصورت زیر می‌باشد:

\[g' = g \left(\frac{\rho_d + \rho_a}{\rho_a} \right) \] \hspace{1cm} (1)

که در آن \(g' \): شتاب تقل موثر، \(g \): شتاب تقل عمومی، \(\rho_d \): جرم مخصص سیال غلطی (\(\frac{K_g}{m^3} \)) و \(\rho_a \): جرم مخصص سیال محیطی می‌باشد. یک پارامتر بسیار مهم در زمینه چریان‌های غوطه‌وری عدید موسوم به ریچاردسون است که بصورت زیر بیان می‌گردد:

\[R_d \]
بلندی وجود لایه برای برخی جریان ها با سیال های غلیظ و پیبرامونی و ناباید برای جریان در ان ناحیه، اشکال جریان به وجود می آید و سیال پیبرامونی به داخل سیال غلیظ کشیده شده‌باید رفتار یکسان بدهد، از نظر این امر، این سرعت عمدی مناسب با سرعت لایه بوده و ضریب این نسبت، کشش جریان غلیظ (Ew) نامیده می‌شود به طور خلاصه می‌توان معادلات به دست آورد:

در صورت زیر نوشته: \[S_f = \sin \theta \]

(1) را بصورت زیر نوشته:

\[\frac{d}{dx} (U h) = E_w U = W_h \]

(2)

\[\frac{d}{dx} (C_s h) = V_s (E_s - C_s) \]

(3)

\[\frac{d}{dx} (U^2 h) = -\frac{1}{2} gR \cos \theta \frac{d}{dx} (C_s h^2) + (gR C_s h) \sin \theta - u_{h0}^2 \]

(4)

که در آن \(R = \frac{\rho_s}{\rho_a} - 1 \) ضریب کشش سیال پیبرامونی، \(E_s \) کشش رسوبات غلظتی و \(C_s \) سرعت و غلظت نقطه‌ای در پرتوی عمقی جریان غلیظ می‌باشند.

Ellison t.h, Turner j.s. (1959).

رابطه (3) را می‌توان بصورت تفاضل محدود به شکل زیر نوشته:

\[(E_{wh})_{j+(j+1)} = \left[\frac{2}{U_{j+1} + U_j} \right] \left[\frac{q_{j+1} - q_j}{X_{j+1} - X_j} \right] \]

(5)

که در آن \(\frac{1}{U} + \) زمینگر دو نقطه متوالی می‌باشند، بالاترین شدت اختلاط جریان غلیظ بصورت نسبت سرعت اختلاط (W_h) به سرعت متوسط بدن جریان غلیظ (U) تعیین می‌شود.

(6)

با داشتن مقادیر سرعت متوسط و دیپ در واحد عرض در دو مقطع متوالی می‌توان میزان شدت اختلاط را از رابطه (6) بین دو مقطع متوالی محاسبه نمود. محققان با انجام آزمایش‌های گوناگون بر روی جریان‌های غلیظ با جرم مخصوص‌های متغیر دریافتند، ضریب شدت اختلاط ثابتی از عدد ریچاردسون می‌باشد.

(Ellison, t.h, Turner j.s. 1973 , 1995)
داردهای آزمایشگاهی به دست آمده که دارای شرایط جریانی و اعداد ریویولژی، زیر دیواره و شاخص سناری متنوعی هستند.

همگی نشان می‌دهند کشاورزان غلیظ دارای یک رابطه با توزیع مناسب با عدد ریویولژی به صورت زیر است:

\[E_w = a(Ri)^b \]

(7)

رابطه معادله (7) که معمولاً استفاده می‌شود به صورت زیر است (طی (1995).

\[E = 0.0015 Ri^{-1} \]

(8)

({Hebbert, et al}.

\[E = 0.0028 Ri^{-12} \]

(9)

آزمایش‌هایی روی جریان‌های غلیظ رسوپ گذار انجام داده‌اند. آن‌ها با انجام آزمایش‌هایی روی بدن جریان غلیظ و استفاده از داده‌های سابق محققین پیشین رابطه‌ای را برای شدت اختلال ارائه کرده‌اند. این رابطه چنین است (1979). (Parker, G Fukushima, Y).

\[E_w = \frac{0.075}{(1 + 718 R^2)^{0.5}} \]

(10)

قارنی (1386) با مقایسه مقدار اختلال کل (مجموع شدت اختلال در ناحیه غوطه‌وری و بدن جریان) با اختلال مربوط به بدن نشان داد در بعضی شرایط مقدار اختلال کل تأثیر شدت اختلال بدن نیز می‌رود.

به‌روزی (1387) با انجام آزمایش‌هایی دریافت که شدت اختلال بدن جریان شامل مقداری از شیب است در جدول 1 روابط ارائه شده برای کشیدن بدن جریان توسط محققان پیشین آمده است. همان‌طور که مشاهده می‌گردد، بررسی تحقیقاتی که در گذشته در ارتباط با بررسی شدت اختلال در جریان غلیظ صورت گرفته است، مربوط به بدن جریان بوده و عموماً مقدار شدت اختلال را فقط تابعی از عدد ریویولژی معرفی کرده‌اند. در حالی که هدف از انجام این تحقیق بررسی شدت اختلال در ناحیه غوطه‌وری (اختلاف اولیه) و بررسی تأثیر شبکه مصرف کردن اثر می‌آید.
جدول: تعدادی از روابط بدست آمده برای محاسبه شدت اختلاف توی محققین مختلف

<table>
<thead>
<tr>
<th>ملاحظات</th>
<th>نوع جریان</th>
<th>شیب (درصد)</th>
<th>رابطه ارائه شده</th>
<th>سال ارائه</th>
<th>نام محقق</th>
</tr>
</thead>
<tbody>
<tr>
<td>رویی و محلول</td>
<td>رویی</td>
<td>4/6</td>
<td>$E_w = 0.0015/Ri$</td>
<td>1975</td>
<td>Ashida, Egashira</td>
</tr>
<tr>
<td>رویی</td>
<td>$E_w = 0.00153/(0.0204 Ri)$</td>
<td>1985</td>
<td>Fukushima et.at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رویی</td>
<td>8</td>
<td>$E_w = \frac{0.0075}{(1 + 718 Ri^{2.4})^{0.5}}$</td>
<td>1987</td>
<td>Parker et al</td>
<td></td>
</tr>
<tr>
<td>رویی</td>
<td>1/4</td>
<td>$E_w = 0.0087\exp(-0.106/Ri)$</td>
<td>1990</td>
<td>Chikita</td>
<td></td>
</tr>
<tr>
<td>رویی و محلول</td>
<td>رویی و محلول</td>
<td>0/265</td>
<td>$E_w = \frac{0.0024}{Ri^{0.06}}$</td>
<td>1995</td>
<td>Ghomeshi</td>
</tr>
<tr>
<td>محلول</td>
<td>محلول</td>
<td>2003</td>
<td>$E_w = 0.0023(Ri)^{-1.0243}$</td>
<td>2004</td>
<td>Haggiabi</td>
</tr>
<tr>
<td>محلول</td>
<td>محلول</td>
<td>2002</td>
<td>$E_w = 0.0021(Ri)^{-1.1238}$</td>
<td>2005</td>
<td>Karamzadeh</td>
</tr>
<tr>
<td>محلول</td>
<td>محلول</td>
<td>2005</td>
<td>$E_w = 0.0017(Ri)^{-1.042}$</td>
<td>2007</td>
<td>Ghasemi</td>
</tr>
<tr>
<td>محلول</td>
<td>محلول</td>
<td>2003</td>
<td>$E_w = 0.0033(Ri)^{-0.9301}$</td>
<td>2007</td>
<td>Torabi</td>
</tr>
<tr>
<td>محلول</td>
<td>محلول</td>
<td>2014</td>
<td>$E_w = \frac{0.0038}{(Ri)^{0.47}}$</td>
<td>2011</td>
<td>Moradi</td>
</tr>
</tbody>
</table>

مواد و روش‌ها:
این تحقیق در یک فلور به طول 925 متر، عرض 50 سانتیمتر و ارتفاع 75 سانتیمتر در آزمایشگاه هیدرولیک دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز انجام شد. در شکل2 نمایی از این فلور و تجهیزات جانبی آن نشان داده شده است. در این آزمایش ابتدا توسط بهبود، محلول گاز غلیظ به محلول گاز غلیظ با ارتفاع تابث منتقل شده و در بالای آن با درجه حرارت که بهره از انتهایی است فلور تا ارتفاع هزینه از آب زلال که به عنوان آب ساقن مورد استفاده قرار گرفته بود، می‌شود. سپس به هر دو آب مورد نظر با میانگین صورت مخلوط پس از اینکه سطح سیال گاز غلیظ یا دفعات و درجه درجه به درست تابث آب ساقن داخل فلور برای می‌شود، درجه جهت تابث نگه داشتن سطح آب در طول انجام آزمایش، جریان آب زلال در انتهای فلور ابتدای وارد یک حویض به آرامش که در آن قسمت تعبیه شده می‌شود و متعاقباً به آرای وارد فلور می‌گردد، پس از وقوع
کامل پیداکردن اقدام به آنالیزگیری برگرفته سرعت در محل فروریز و نیز در انتهای ناحیه جریان غوطه‌وری توسط دستگاه سرعت‌سنج DOP2000 که به روش آکوستیک این آنالیزگیری را انجام می‌دهد می‌شود ارتقاء و سرعت متوسط جریان غلطی‌توزیع روابط آلیسون و تزرین(1969) و با اندازه‌گیری از برگرفته سرعت صورت زیر محاسبه می‌شود:

\[Uh = \int_0^h uhdz = \int_0^h udz = \overline{U} h_i = q \tag{11} \]

\[U^2h = \int_0^h u^2hdz = \int_0^h u^2dz = \beta \overline{U}^2 h_i \tag{12} \]

که در آن (J) سرعت نقطه‌ای جریان، \(h_i \) ارتقاء است که در آن سرعت \(u \) برای با صفر، \(h \) سرعت متوسط جریان می‌باشد با محاسبه جرم مخصوص دو سیال غلطی و ساکن (اب شری), مقدار \(g \) ضریب توزیع سرعت از دستگاه غلتی، عناصر مقدار \(\beta \) عدد بیچاردسون هر مقطع محاسبه گردید، میانگین عدد بیچاردسون در ابتدا و انتهای ناحیه غوطه‌وری به عنوان عدد بیچاردسون ناحیه غوطه‌وری در نظر گرفته شد با محاسبه شدت اختلاف از رابطه (3) با (6) و مقایسه با عدد بیچاردسون می‌توان ارتباط این دو مورد بررسی داد برای بررسی ارتباط مقافر شدت اختلاف با دو یا چهار عدد بیچاردسون و شیب (به طور همزمان) از تری‌افزار SPSS استفاده گردید این تحقیق در SPSS 16، 18 و 21 دی‌های ورودی متفاوت انجام شد.

شکل 2: نمایی از مدل فیزیکی مورد استفاده برای این تحقیق
نتایج و بحث:
پروفیل سرعت
برای بررسی شدت اختلاف در جریان غلظ‌تر، لازم است سرعت متوسط جریان با دقت مناسب محاسبه شود. برای این منظور، ابتدا پروفیل سرعت به روش آکوستیک پرداخت شد در نمودار نشان داده شده در شکل 3 نمودار ایز پروفیل‌های بی بعد سرعت در ابتدا و انتهای ناحیه غوطه‌وری نشان داده شده است. همان‌طور که در این شکل مشخص است، ارتفاع جریان در انتهای ناحیه غوطه‌وری، وری کمتر از ارتفاع آن در نقطه غوطه‌وری می‌یابد.

شکل 3: نمودار ایز پروفیل‌های بی بعد سرعت در ابتدا و انتهای ناحیه غوطه‌وری

محاسبه شدت اختلاف در ناحیه غوطه‌وری:
در تحقیق حاضر رابطه بین کشش در ناحیه غوطه‌وری جریان غلظ‌تر (اختلاف اولیه) و عدد ریچاردسون با استفاده از نتایج آزمایشگاهی بدست‌آمده است به شکل 4 رابطه بین این دو پارامتر برای کل داده‌های آزمایشگاهی نشان داده شده است.

شکل 4: رابطه بین شدت اختلاف و عدد ریچاردسون در ناحیه غوطه‌وری
از شکل 4 رابطه بین مقدار کشش و عدد ریچاردسون به صورت زیر تلاش می‌شود:

\[R^2 = 0.67 \]

\[E_w = 0.17 Ri^{-0.196} \]

و در شکل 5 مقایسه بین شدت اختلاط به دست آمده برای آزمایش‌ها این تحقیق با نتایج بررسی سابیر محققان را در می‌‌پیماید. لگاریتمی نشان می‌دهد همانگونه که از این شکل قابل مشاهده است مقادیر شدت اختلاط مربوط به این تحقیق به مقدار قابل ملاحظه‌ای با نتایج سابیرین بزرگتر به دست آمده است. لازم به ذکر است تحقیقات گذشته اکثرا بر بررسی شدت اختلاط در جریان غوطه‌وری چرخه‌ای و نسبی رسیده است. بنابراین این مطالعه در این تحقیق بررسی شدت اختلاط در ناحیه غوطه‌وری جریان غوطه‌وری مد نظر بوده است. افتتاح فاصله به وجود آمده بین مقادیر این تحقیق با مقادیر به دست آمده توسط سابیر محققان، با وجود طول کم این ناحیه، علاوه بر تشکیل ناحیه‌های بین‌بینی و گردانی چگالی، می‌تواند منجر به وجود جرخی در این ناحیه باشد که به علت داشتن خطوط سرعت غیر موازی در قبیل و بعد از نقطه غوطه‌وری با قدرت زیاد، سیال ساکن را به سمت خود می‌کشد.

![شکل 5: مقایسه داده‌های این تحقیق با نتایج سابیر محققین](image)

بررسی تغییرات \(Ri \) با \(E_w \) ناشی از تغییرات شیب

جهت بررسی تأثیر شیب کف بر روی پارامتر سطح اختلاط، اقدام به دست‌بسته‌ی داده‌ها بر اساس شیب کف جریان غوطه‌وری ورودی شد.

سپس تغییرات سطح اختلاط مربوط به هر شیب، نسبت به عدد ریچاردسون بررسی گردید. جفت‌های تغییرات \(Ri \) با \(E_w \) در شیب‌های مختلف ترسیم گردید. روند تغییرات مطلق اسکالر 6 تا 8 خواهد بود. در شکل 9 نیز مقادیر شدت اختلاط برای هر شیب نشان داده شده است.

77
شکل 6: رابطه شدت اختلاط و عدد ریچاردسون در ناحیه غوطه‌وری در $S=0.018$

شکل 7: رابطه شدت اختلاط و عدد ریچاردسون در ناحیه غوطه‌وری در $S=0.12$

شکل 8: رابطه شدت اختلاط و عدد ریچاردسون در ناحیه غوطه‌وری در $S=0.014$
شکل 9: تأثیر تغییر شیب در روند تغییرات \(E_w \) با \(E_r \) در جریان غلیظ

انکشاف 6 نشان می‌دهد، در شرایط اولیه یکسان، با افزایش شیب بر میزان شدت اختلالات افزوده می‌گردد بنابراین عامل شیب نیز می‌تواند به عنوان یکی دیگر از پارامترهای پاسخگویی باشد که بر شدت اختلالات اثر بگذارد در جدول زیر ضرایب معادله (7) و ضریب همبستگی آنها برای شیب‌های مختلف به صورت مجزا محاسبه شده است.

جدول 2: ضرایب معادلات شدت اختلالات بر اساس معادله (7)

<table>
<thead>
<tr>
<th>(R^2)</th>
<th>(b)</th>
<th>(a)</th>
<th>(S%)</th>
<th>Inflow type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.78</td>
<td>0.020</td>
<td>0.16</td>
<td>0.00</td>
<td>Slope</td>
</tr>
<tr>
<td>0.82</td>
<td>0.018</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.72</td>
<td>0.017</td>
<td>0.09</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>0.019</td>
<td>0.06</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

جدالشکل شدت اختلال تابعی از شیب و عدد ریچاردسون در نظر گرفته شود. رابطه حاکم بر کلیه داده‌ها را می‌توان با استفاده از تحلیل آماری و رگرسیون غیرخطی در نرم‌افزار SPSS بصورت زیر تعریف نمود:

\[
E_w = 0.03(Ri)^{-0.178} (S)^{0.252} \; R^2 = 0.82
\] (14)
که در رابطه فوق $ S$ مقدار شیب کف (بر حسب m/m) می‌باشد، بنابراین هم‌طور که مشاهده می‌شود پارامتر شیب نیز باعث افزایش دقیق محاسبه شده از این مقدار. این نتیجه خوبی می‌تواند به عنوان استفاده زیادی لند. در این آزمایشات و همچنین به علت محاسبه شده از این مقدار مربوط به ناحیه غوطه‌وری باشد که در این ناحیه هر قدر مقدار شیب بیشتر باشد، عامل سوم‌نیم قبیل است و در نتیجه به سرعت آزمایش غوطه‌وری مقدار $ (\frac{dh}{dt})$ بیشتر بوده و لذا اثر جریان‌های جریان در اخلاط آب ساکن بیشتر است. به عبارت دیگر با افزایش شیب، شرایطی جریان غوطه‌وری به زیر آب ساکن شدیدتر بوده و بنابراین با قدرت بیشتری می‌تواند آب ساکن را به درون خود بکشاند.

نتیجه گیری

در این تحقیق رابطه بین شدت اختلاط جریان غوطه‌وری و عوامل موثر، در آزمایشات مورد بررسی قرار گرفت. این تجاوی این اختلاط و اثر دیگر اجزای هر اثری تأثیر از سرعت متوسط و جرم مخصول و ارتفاع جریان می‌باشد مورد بررسی قرار گرفت. نتیجه این تحقیق نشان می‌دهد در ناحیه غوطه‌وری نیز همانند بدنه جریان یک رابطه تغییری به صورت زیر برقرار است:

$$ Ew = 0.017 Ri^{-0.196} $$

برای ارزیابی اثر شیب کف بر میزان کشش، شکل کشش در هر شیب ترسری، این مقایسه آنها، افزایش مقدار شدت اختلاط با افزایش شیب مشاهده شد. لذا با انجام تحلیل آماری و رگرسیون غیرخطی در نرم‌افزار SPSS نتایج رابطه مربوط به طریق رابطه زیر استخراج گردید:

$$ Ew = 0.03 (Ri)^{-0.178} (S)^{0.252} $$

منابع:

اوزک مدنی زاده، م. و خانجی، م. ج. (1387). بررسی آزمایشگاهی جریان‌های غوطه‌وری در مخازن سد دهه هفتمین کنفرانس هیدرولیک ایران، دانشگاه شهید عباسی، تهران، ایران، ص 21-22.

بهرامی، ح. (1388). بررسی نیازهای پرورش تانکریک در جریان‌های غوطه‌وری رسانه دکتری سازه‌های آبی دانشکده علوم آب، دانشگاه شهید جهانی اهواز، ص 28-59.

ترابی پدیده، ح. (1387). بررسی جریان‌های غوطه‌وری در همگرایی و واگرایی رسانه دکتری سازه‌های آبی دانشکده علوم آب، دانشگاه شهید جهانی اهواز، ص 235-359.

حقی آیی، ا. (1383). بررسی اثر شیب کف بر پرتو باره‌های سرعت و غلطت جریان‌های غوطه‌وری رسانه دکتری سازه‌های آبی دانشکده علوم آب، دانشگاه شهید جهانی اهواز، ص 79-88.

