اولویت‌بندی عوامل تعیین غلظت کشنده (LC50) کلریدکادمیوم در ماهی کپور معمولی (Cyprinus carpio) و ماهی کاراس طلایی (Carassius auratus)

سیدعلی اکبر هدایتی، احمد رضا جبله

چکیده

dر این مطالعه به تعیین غلظت کشنده فلز‌های کلریدکادمیوم در ماهی کپور معمولی (Cyprinus carpio) و ماهی کاراس طلایی (Carassius auratus) در شرایط آزمایشگاهی با هدف تأثیر سپت کلریدکادمیوم بر میزان مقاومت به‌ماهیان این دو ماهی در مقادیر محاسباتی LC50 پرداخته شد. پس از طی دوره آداپتاسیون، 105 فضای بی‌ماهی کپور معمولی با میانگین وزنی 18 گرم و طول کل 12 سانتی متر و 105 قطعه بی‌ماهی کاراس طلایی با میانگین وزنی 15 گرم و طول کل 7 سانتی متر استفاده شد. آزمایش LC50 پس از تعیین محدوده کشنده و تعیین غلظت‌های سم کلریدکادمیوم صورت گرفت. آزمایش‌ها در 9 تیمار و 3 تکرار برای هر ماهی در طول مدت 96 ساعت انجام گرفت. به‌منظور تجزیه و تحلیل داده‌های حاصل از آزمایش از نرم‌افزارهای SPSS و پروپیک آنالیز استفاده شد. براساس نتایج بدست آمده، میلی‌گرم در مقایسه با ماهی کپور (7/77 میلی‌گرم بر لیتر بود و می‌توان نتیجه گرفت که کلریدکادمیوم سمیت نسبتاً شدیدی بر ماهیان مورد آزمایش داشته و ماهی کاراس طلایی در مقایسه با کپور معمولی در مقابل سم کلریدکادمیوم از مقاومت بیشتری برخوردار است.

کلید واژه‌های فلزات سنگین، کپور ماهیان (Cyprinidae)، ماهی قرمز (LC50)

گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گلستان، ایران

ahmadreza89@yahoo.com
1- مقدمه

آلودگی‌های محیطی به وسیله عناصر سنگین به دلیل فعالیت‌های صنعتی و پیشرفته کشاورزی در اواخر قرن ۱۹ و در ادامه در قرن ۲۰ افزایش یافته است. در این میان آلودگی آب و خاک از این عناصر منجر به تهدید سالماتی انسان‌ها از طریق زنگیره‌های غذایی شده است (McLaughlin et al., 1999).

محیط‌های آبی از جمله محیط‌های هستند که در معرض خطرات اسیدی از سرموم می‌باشند. آب‌دانان نیز به‌خاطر غوطه‌وری دامنه در این محیط‌ها پیوسته‌اند و در معرض تماس با آن آلاله‌ها می‌باشند. امروزه مهم‌ترین عاملی که بیشترین توجه مجامع علمی را به خود جلب نموده آلودگی محیط زیست به ویژه افزایش روز افزون فاضل‌های صنعتی حاوی ترکیبات پاداوت فلزی سرموم و آفت‌کش‌های کشاورزی است که در راستای توسعه صنعتی و پیشرفته بشر قرار داد. فاضل‌های صنعتی به همراه فاضل‌های شهری، تبدیل‌های آبی پرور و زیان‌دهی‌های شور و همچنین سوخت‌های فسفاتی از مهم‌ترین منابع آلودگی آب به‌شمار می‌رودند. فاضل‌های صنعتی شامل انواعی از آلودگی‌های سرموم محاسباتی آمیز و ترکیبات سرموم فلزی می‌باشند. بنابراین پایش مواد سرموم مختلف می‌تواند به عنوان عاملی در بررسی سلامت عمومی به شمار آید (Sharma, 2003).

فلزات سنگین بیک از این آلاله‌ها می‌باشد که پس از ورود به اکوسیستم‌های آبی در بافت‌ها و اندام‌های آبی و از جمله ماهیان تجمع یافته و نهایتاً وارد زنگیره غذایی می‌شوند. از انجایی که ماهی‌ها بخش عمده‌ای از رزیم غذایی انسان را تشکیل می‌دهند، این فلزات می‌توانند از طریق تغذیه از ماهیان آلوده وارد بدن انسان گردد. میزان جذب و تجمع عناصر سنگین در آبیان و خصوصاً ماهیان تابعی از شرایط اکولوژی، فیزیکی، شیمیایی و بیولوژیک آب، نوع عنصر، آبی و فیزیولوژی بدن جاندار می‌باشد (Jaffar et al., 1998).

در بین فلزات سنگین وارد شده به اکوسیستم‌های آبی، کادمیوم یکی از سرموم ترین عناصر برای اندام‌های زندگی است که نقش زیست‌نیتی داشته و یک عنصر غیرضروری بوده که دوام بیولوژیک بالایی دارد و یکی از ترکیبات مهم موجود در نفت خام می‌باشد (اسماعلی، ۱۳۸۱). این که از طریق فرسایش خاک و سنگ‌پر، زاپیریت‌ها و آپاکرت‌ها وارد اکوسیستم‌های آبی می‌شود و به دلیل فعالیت‌های انسانی هم‌زمان با کلاس‌های حاصل از فعالیت‌های معدن کاری و فعالیت‌های صنعتی به محیط‌ها گشته و در آب و خاک به‌طور می‌پایان. مطالعات نشان می‌دهد کاملاً دارای اثر سرطان کبد گونه‌های حیوانات می‌شود. سرموم جذب کادمیوم ممکن است باعث مرگ حیوانات و پرندگان شده و یا مسمومیت در آبیان را ایجاد کند.

ارزیابی‌هایی نشان می‌دهند که کمتر از یک درصد از میزان آفت‌کش‌های مصرفی به آتات مرسند و ماییک بیشتر وارد محیط زیست شده و منابع خاکی و آبی را آلوده کرده و بر حسب میزان ماندگاری خود، تأثیرات نامطلوبی بر اکوسیستم و جانداران آن می‌گذارند. بسیاری از فلزات به طور طبیعی از اجزای
اولیت بندی عوامل تغییر غلظت کشندگی (LC₅₀96h) کاردی کادموی در ماهی کور ...

اصل اکووسیستم‌های آبی هستند و تعدادی از آنها در بیش از موارد زندگی حیاتی دارند (et al, 2006) اما در صورتی که غلظت آنها از حد معینی فراتر برود ممکن است باعث تغییر در روند طبیعی اکووسیستم‌ها آبی و عملکرد صحیح اجزای بدن آبهای منشا بوده، به دنبال انتقال آلاینده‌های ذکر شده به محیط‌های دریایی این احتمال وجود منهای که ماهی مقادیری از باره‌فنی فلزات سنگین را از طریق زنجیره غذایی یا از طریق آب (2002) (Chale, 2002) نیازهای اکولوژیک غلظت فلزات سنگین در آب و روبه‌رو مدت زمان مناسب‌تر ماهی در محیط آبی فصل صید و خواص فیزیکی و شیمیایی آب (شوری، pH، سختی و دما) از عوامل مؤثر در تجمع فلزات سنگین در اندام‌های مختلف ماهی می‌باشد. (Canli, 2003) کاردی کوری به عنوان یکی از فلزات سنگین خطروانی، به دلیل تأثیرات منفی مختلف نظر کاهش رشد، تغییر رفتار، تغییرات زننگی و نیز مگرور در آب‌های همجنین به سبب سمت و تمامی جهت تجمع در زنجیره غذایی موجب ایجاد نگرانی در مصرف ماهی‌های زندگی است. از جمله مطالعات متعدد صورت گرفته در این زمینه توصیف نظرات مختلف به منظور اندازه‌گیری غلظت فلزات سنگین در موجودات آبی می‌توان به مطالعه صیاد کاشانی (1380)، اندازه‌گیری مقدار تجمع سرب در سواحل جنوبی دریای خزر، امینی رنجبر (1384)، اندازه‌گیری مقادیر تجمع فلزات سنگین سرب و کادموی را در دو گونه از ماهیان خاوایی دریای خزر، مطالعه Filazi (2003) بر روی مقادیر تجمع فلزات سنگین سرب و کادموی در ماهی کفت کرد (Mugil auratus) (1996) بر روی مقادیر تجمع فلزات سنگین سرب، کادموی را در ماهی (Mugil auratus) در سواحل شمالی دریای مدیترانه اندازه‌گیری نموده انداره داشت. (Bu-olayan (1996) میزان تجمع فلزات سنگین سرب، وانادیوم و نیکل را در ماهی (Solea bleekeri) کوتیه و همکاران (2005) نیز مقادیر تجمع فلزات سنگین سرب، وانادیوم، کادموی و نیکل را در 3 گونه از ماهیان منطقه شمالی خلیج فارس اندازه‌گیری نمودند، با توجه به مطالعات صورت گرفته، نتایج نشان دهنده این مطلب است که این گروه مناسبی جهت مطالعه اثر فلزات سنگین در اکووسیستم‌های آبی می‌باشد.

با توجه به اینکه تغییرات غلظت فلزات سنگین در محیط‌های آبی اثرات زیستی قابل توجهی را بر روی موجودات آبی به ویژه انواع ماهی ها پدید می‌آورد و با توجه به تسلسل زنجیره‌های غذایی در عالم موجودات زندگی و تاثیر پایداری فلزات سنگین در بدن موجودات زندگی انتقال آن به حلق‌های بعدی زنجیره‌های غذایی، تأثیر فلزات سنگین در حیات موجودات آبی به‌سیار حائز اهمیت است (امیدی و...
حسین زاده، ۱۳۷۳. لذا در این میان ماهی کپر معمولی (Cyprinus carpio) و کاراس طلایی (Carassius auratus) برحال اهمیت بالا در امر آبزیپروری نقش بالایی در مطالعات تکسیکولوژی را داراست و مطالعه حاضر نیز با هدف بررسی سمیت حاد فاز سنگین کارسیم کلرید بر ماهیان مذکور صورت گرفته تا بتواند کمک مؤثری به ارزش تولید این محصول بنماید.

۲- مواد و روش‌ها

این تحقیق با هدف تعیین آثار سمیت حاد کلریدکادمیوم در دو گونه از ماهیان کپر معمولی (Cyprinus carpio) و کاراس طلایی (Carassius auratus) در محل آزمایشگاه شهید ناصر فضلی برای ایجاد علائم کشاورزی و مانع طبیعی گرگان اجرا گردید. جهت انجام این آزمایش، ۱۰۰ تیمچه به ماهی کپر معمولی و ۵۰ تیمچه به ماهی کاراس طلایی در سنگین و زنی حدوداً ۱۸ گرم و طول کل ۱۲ سانتی‌متر و ۱۰۵ تیمچه به ماهی کاراس طلایی در سنگین و زنی حدوداً ۱۵ گرم و طول کل ۷ سانتی‌متر از یک مزرعه پرورش ماهیان گرمهای در شرایط گردید خردزاری شد و سپس به بخش ونیروی این مرکز منتقل شدند. سپس سازگاری این ماهیان در داخل تانک‌های فایبرگلاس ۳۰۰ لیتری، به مدت یک هفته مرتع گرفته و در این مدت ماهیان به صورت روزانه غذایی شدند و ۴۴ ساعت قبل از شروع آزمایش‌ها از دانن غذا به بهجه ماهیان خودداری شد تا آلودگی محیط جلوگیری شود. کلیه شرایط فیزیوکشیمیایی آب و محیط همچون دما، pH و سایر فاکتورهای در طی آزمایش کنترل می‌شد تا

(Di Giulio & Hinton, 2008)

ثبت بیماران و تأثیری در نتیجه آزمایش نداشت باشد.

آزمایش LC۵۰ پس از تعیین محدوده کشنده‌گی و تعیین غلظت‌های سرم کلریدکادمیوم صورت گرفت. برای تعیین درصد بازاندگی به ماهیان در شرایط طبيعي غلظت‌های مورد نظر از سرم کلریدکادمیوم، آزمایش‌ها در ۹ تیم برای ماهی کپر و ۹ تیم برای ماهی کاراس طلایی، در طول مدت ۹۶ ساعت انجام گرفت. و برای هر تیم ۳ تکرار در نظر گرفته شد و یک تیم‌بهر شاهد هم انجام داده شد. پس از انجام آزمایش‌ها سمیت حاد میزان مرس و میزان بهجه ماهیان در فاصله زمانی ۲۴ و ۹۶ ساعت ثبت و بر اساس آن درصد تغییرات مرس و میزان بهجه ماهیان نسبت به شاهد محاسبه و

۷۲.۴۸ و ۳۶.۴۶ درصد بیشتر و بر اساس آن درصد تغییرات مرس و میزان بهجه ماهیان نسبت به شاهد محاسبه و

از جدول پروپتی، عدد مربوط به هریک از تغییرات استخراج و در سمت جدول پروپتی ویو (value) جدول مرجع قرار می‌گیرد و همچنین با استفاده از نرم‌افزار spss پاده‌های آزمایش‌های مورد تجزیه و تحلیل قرار گرفته (Finney D, 1990). مقادیر LC90 ، LC70 ، LC50 و LC30 یا میانگین محدوده کشنده‌گی گردید.

۳- نتایج

کلرید کادمیوم برای ماهیان جزو سموم خطرناک طبقه‌بندی شده است. در این مطالعه در گروه شاهد ماهیان کپر معمولی و کاراس طلایی هیچ محدوده مشاهده نشد و همچنین در غلظت‌های ۱/۰۰ و ۱/۱۰۰،
اولین بندی عوامل تعیین غلظت کشنده (LC۹۰\(96\)h) کلرید کادمیوم در ماهی کپور ...

\(\text{جدول ۱: تعداد تلفات کپور معمولی در مدت در معرض گذاری حاد در برابر سم کلرید کادمیوم} \ n=۷ \) (برای هر غلظت)

<table>
<thead>
<tr>
<th>غلظت (ppm)</th>
<th>۲۴ ساعت</th>
<th>۴۸ ساعت</th>
<th>۷۲ ساعت</th>
<th>۹۶ ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد (بدون سم)</td>
<td>۰.۰</td>
<td>۰.۰</td>
<td>۰.۰</td>
<td>۰.۰</td>
</tr>
<tr>
<td>۰.۰۶</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۱</td>
<td></td>
</tr>
<tr>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td></td>
</tr>
<tr>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td></td>
</tr>
<tr>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td></td>
</tr>
<tr>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td></td>
</tr>
<tr>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td></td>
</tr>
<tr>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{جدول ۲: تعداد تلفات کاراس طلازی در مدت در معرض گذاری حاد در برابر سم کلرید کادمیوم} \ n=۷ \) (برای هر غلظت)

<table>
<thead>
<tr>
<th>غلظت (ppm)</th>
<th>۲۴ ساعت</th>
<th>۴۸ ساعت</th>
<th>۷۲ ساعت</th>
<th>۹۶ ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد (بدون سم)</td>
<td>۰.۰</td>
<td>۰.۰</td>
<td>۰.۰</td>
<td>۰.۰</td>
</tr>
<tr>
<td>۰.۰۶</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۱</td>
<td></td>
</tr>
<tr>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td></td>
</tr>
<tr>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td></td>
</tr>
<tr>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td></td>
</tr>
<tr>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td></td>
</tr>
<tr>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td></td>
</tr>
<tr>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td></td>
</tr>
</tbody>
</table>

بر اساس نتایج حاصل از جدول ۱ و ۲ همچنین با استفاده از نرم افزار پروپایت آتالایزر مقادیر کلرید کادمیوم در طی زمان‌های ۲۴، ۴۷ و ۹۶ ساعت \(\text{LC}_{1}, \text{LC}_{10}, \text{LC}_{30}, \text{LC}_{50}, \text{LC}_{70}, \text{LC}_{90}, \text{LC}_{99}\) محاسبه شد که در جدول‌های ۳ و ۴ آورده شده است (رستمی و سلطانت، ۱۳۸۱). بر اساس جدول
پروپیت مقدار غلظت مجاز ۵۰ برای ماهیان کیور معمولی در مدت ۹۶ ساعت ۷۷ میلی‌گرم بر لیتر LC50 و برای ماهیان کاراتس طلایی ۱۱۲ میلی‌گرم بر لیتر محاسبه شد. بر اساس میزان محاسباتی در مدت ۹۶ ساعت، می‌توان کاربرد کدامیک با این غلظت زا در گروه ماده سمن طبقه بنی نمود. با توجه به مقادیر محاسباتی LC50 ماهی کیور معمولی و کاراتس طلایی می‌توان چنین نتایج‌گیری نمود که ماهی کاراتس طلایی در مقایسه با ماهی کیور معمولی مقاومتر است.

جدول ۳: غلظت‌های کشته‌ده (LC1-99) در فاصله زمانی (۹۶-۲۴ ساعت) در کیور معمولی (C. carpio)

<table>
<thead>
<tr>
<th>فاصله اطمنان (95 درصد)</th>
<th>غلظت (میلی‌گرم بر لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۶ ۷۲ ۶۴ ۵۸ ۴۴ ۳۲ ۲۴</td>
<td>LC1 LC10 LC50 LC50 LC70 LC90 LC99</td>
</tr>
<tr>
<td>۶/۸±۸/۴۲ ۷/۹±۸/۴۲ ۹/۹±۸/۲۲ ۹/۷±۸/۲۲</td>
<td>۶/۱±۱/۵۷ ۹/۷±۱/۳۷ ۱۲/۳±۱/۷۵ ۱۴/۲±۱/۲۲</td>
</tr>
<tr>
<td>۳/۵±۱/۱۱ ۷/۲±۱/۱۱ ۱۰/۰±۱/۱۱ ۱۲/۲±۱/۱۱</td>
<td>۴/۳±۱/۳۱ ۱۲/۶±۱/۷۲ ۱۷/۲±۱/۲۲ ۲۱/۴±۱/۷۲</td>
</tr>
</tbody>
</table>

جدول ۴: غلظت‌های کشته‌ده (LC1-99) در فاصله زمانی (۹۶-۲۴ ساعت) در ماهی کاراتس طلایی (C. auratus)

<table>
<thead>
<tr>
<th>فاصله اطمنان (95 درصد)</th>
<th>غلظت (میلی‌گرم بر لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۶ ۷۲ ۶۴ ۵۸ ۴۴ ۳۲ ۲۴</td>
<td>LC1 LC10 LC50 LC50 LC70 LC90 LC99</td>
</tr>
<tr>
<td>۳/۸±۲/۱۳ ۸/۸±۲/۱۳ ۱۲/۸±۱/۱۳ ۱۴/۹±۱/۱۳</td>
<td>۳/۱±۱/۷۸ ۸/۸±۱/۱۳ ۱۵/۰±۱/۷۸ ۱۵/۰±۱/۷۸</td>
</tr>
<tr>
<td>۳/۸±۲/۱۳ ۱۴/۹±۱/۱۳ ۱۵/۰±۱/۷۸ ۱۸/۸±۱/۷۸</td>
<td>۵/۲±۱/۷۸ ۱۸/۸±۱/۷۸ ۲۲/۲±۱/۷۸ ۲۹/۹±۱/۷۸</td>
</tr>
</tbody>
</table>

NOEC میزان حداقل غلظت مؤثر سم یا LOEC و میزان بالاترین غلظت بدون تأثیر سم یا
کلرید کادمیوم در ماهی کپور معمولی (C. auratus) و کاراس طلایی (C. carpio) ۴-
بحث و نتیجه‌گیری
فلزات سنگین به علت اثرات سمی و توان تجمیعی زیستی در گونه‌های مختلف آبزیان حتی به‌دلیل وارد شدن به زنجیره غذایی از اهمیت ویژه‌ای برخوردار می‌باشد. چنانچه میزان این عناصر به دلایل گوناگونی از حدود معیین فراتر رود باعث شده بود تا اکنون احتمال وجود آبزیان می‌گردد غلظت فلزات سنگین معمولاً کم در حدود ۱ قسمت در میلیارد (ppb) می‌باشد. این فلزات جزء عوامل طبیعی تشکیل دهنده آب دریا هستند و مقداری از فرآیندهای آلی با آنها به صورت طبیعی از راه‌های متغیر از قبیل فرایش سنگهای معدنی، باز هزینه بالای فعالیت‌های انسانی و آب‌های زیرزمینی وارد دریاها می‌گردد (Chale, 1989). براساس نظریه (Chale, 2002)، به‌شمار می‌رود که برای مصرف‌کنندگان از غذاهای دریایی آلوده به این فلزات نیز خطر بزرگی محصول می‌شود، فلز سنگین مورد مطالعه در این بررسی به عنوان یک فلز سمی به مقدار زیادی وارد شد. و اثرات سوختگی را بر مصرف‌کنندگان بر جای می‌گذارد. به طوریکه کادمیوم به عنوان یک فلز سمی به مقدار زیادی از طریق غذا یا جلب شده و اثرات سوء خود ازجمله مشکلات اسکلتی، برونشیت، آفیمزم نیز خویشتن می‌کند که برای مصرف‌کنندگان وسیع می‌شود (Abel, 1381) بر اساس اسناد استفاده از ماهی‌هایی که دارای غلظت‌های بالایی از تجمع فلزات سنگین در باد بیشتر هستند ممکن است مربوط به سم کلرید کادمیوم در دو ماهی کاراس طلایی و کپور معمولی در شکل ۱ آمده است. با توجه به نتایج بهدست آمده در ماهی کپور معمولی، میزان ۱۱ میلی‌گرم بر لیر دست آمده که بانگر تأثیر اولین غلظت مؤثر تا ۸ ساعت پس از مواجهه با سم می‌باشد. از طرفی در خصوص پس از مواجهه غلظت ۶ میلی‌گرم بر لیر به دست آمده. همچنین با توجه به نتایج بهدست آمده در ماهی کاراس طلایی، میزان ۶ میلی‌گرم بر لیر به دست آمد و میزان NOEC نیز ۲ میلی‌گرم بر لیر به دست آمد (شکل ۱).

![شکل ۱: میزان حداقل غلظت مؤثر سم NOEC و میزان بالاترین غلظت بدون تأثیر سم سم کلرید کادمیوم در ماهی کپور معمولی (C. auratus) و کاراس طلایی (C. carpio)](image)
برای سلامتی مصرف کننده مضر باشد. با توجه به مقادیر به‌دست‌آمده از تجمع فلزات سنگین در ماهی کپور و کاراس مورد بررسی در این مطالعه و مقایسه آنها با استانداردها چنین (جدول 1) غلظت فلز کادمیوم در بدین ضعیف ماهی کپور و کاراس در حد خطرناک برای مصرف انسانی می‌باشد. براساس تحقیق Viarengo (1989) توانای موجودات برای جدید، تجمع، برداشت یا سم‌بندی فلزات سنگین به‌طور اساسی با هم فرق می‌کند. گونه‌هایی که دارای مقادیر مشخصی از ملوتلوئید‌ها و کادمیوم ها باشند می‌توانند سم‌بندی این فلزات را از بین ببرند. براساس نتایج به‌دست‌آمده یکی از دلایل اختلافات تجمع این فلزات سنگین در گونه‌های مختلف ماهی‌ها از توانایی واکنش‌های مختلف ماهی‌ها بر این امر نسبت داد. با توجه به نظریه Capuzzo و همکاران (1985) (هنگامی که فلزات سنگین بیش از حد در محیط وجود داشته باشد با وعده پدیده‌ای آنزیمی عمل می‌کند. همچنین میزان جذب و تجمع فلزات سنگین در ماهی می‌تواند تحت تأثیر شرایط فیزیک‌شیمیایی آب، غلظت فلزات سنگین در آب و رسوب عادات تغذیه و عوامل دیگر باشد. لذا با توجه به رژیم تغذیه‌ای ماهی کپور و کاراس احتمالات انتقال فلز کادمیوم از زنجیره غذایی و از طریق تغذیه به بدن انسان نیز وجود دارد. به‌طورکلی عوامل گوناگونی می‌تواند پس از جذب آزمایش‌های سمیت تاثیرگذار باشد که در این عواملی چون، خصوصیات آب و ویژگی‌های زیستی گونه‌های آزمایشی می‌تواند مهم‌ترین پارامتر باشد. لذا در انجام تست‌های سمیت حاد لازم است که با استفاده از روش‌های آزمایش استاندارد متغیرهای خارجی و تصادفی را به حداکثر برسانیم و همچنین بازیابی از سالم بودن گونه‌های مورد آزمایش اطمینان کسب کنم و آنها را به نحو تصادفی توزیع نمایم (شرورته فیض آبادی، 1380). مطالعات آزمایشگاهی نشان دهنده اینکه جفت علوم سم و بیماری‌ها کاهشی و صنعتی در محیط‌های آلی است. اطلاعات حاصل از آزمایش‌های سمیستاتیکس در علم اکوئیکولوژی نمایانگر تأثیرات وارد شده از سوی این سم‌بندی ماهیان آب پیرین است (Francisco et al., 1994) نتایج به‌دست‌آمده از این تحقیق نشان می‌دهد که میزان LC50 96 ساعت سم کالریدکادمیوم بر روی ماهی کپور با میانگین وزنی 18 گرم و ماهی کاراس با میانگین وزنی 15 گرم افزایش ساعت‌بندی آزمایش، کاهش یافته به‌صورت درک‌های دیگر چه ساعت‌های آزمایش افزایش محاسبه‌ی می‌باشد. میزان منابع دیگر میزان همچنین بیش از مقدار LC50 در ساعت اولیه آزمایش همگونی بیشتر از مقدار LC50 در ساعت دومی آزمایش است. بنابراین در مدت زمان 96 ساعت در کلیه آزمایش‌ها سم‌بندی حاد LC50 هیچ گونه تلفیقی در ماهیان گروه مشاهده نشد. نتایج این آزمایش نشان می‌دهد که مقدار LC50 سم کالریدکادمیوم در مدت 96 ساعت بر ماهی کپور معمولی و ماهی کاراس طلایی به ترتیب 97/7 و
با توجه به نتایج تحقیق حاصل LC50 ماهی کاراس طلای (11/2) در مقایسه با میزان LC50‌ی حاصل معمولی (9/77) مقدار عادی بیشتری را به خود اختصاص داده و می‌توان نتیجه گیری نمود که ماهی کاراس طلای (Mugil auratus) در مواجه با فلز‌های مکانیکی کدلی از مقاومت بیشتری برخوردار بوده و آستانه تحل بالایی دارد. از طرفی می‌توان اظهار نمود که توجه به تجمع فلزات سنجک در بافت آربور، بلافاصله ماهی کاراس از تجمع بالایی فلز مزکور برخوردار باشد. لذا با توجه به میزان استاندارد فلزات سنجک در بافت غذاهای دریایی (جدول 5)، با توجه به مقادیر LC50 در جدول می‌توان اظهار نمود در بررسی حاصل میزان کیور معمولی در مقایسه با ماهی کاراس طلای از سلامت غذاهای بیشتری برخوردار باشد.

منابع

1- اسماعیلی ساری ع، (1381). آلانی ها، بهداشت و استانداردهای محیط زیست. انتشارات نقش مهر 767 صفحه.

2- امینی رنجبر غ، و سروستیا، ف. (1384). تجربه تجزیه سنجک در بافت عضله ماهی کال فال طلایی (Mugil auratus) دریای خزر، در ارتباط با برخی مشخصات بیومتریکی. مجله علمی شیلات، ایران، شماره 14، صفحات 1-18.

3- امینی رنجبر غ، و حسین زاده صحافی، ه. (1373). تجربه میزان چربی در یک گونه از کوسه ماهی خلیج فارس (Calcharhinus dussumieri)، مجله علمی شیلات ایران، شماره 21، صفحات 16-5.

4- شریعتی فیض آبادی، ف. (1380). تعیین نکترو تنگه‌ای و کودکان، برروی ماهیان سیم، سفید و کیور نقره‌ای، پایان نامه کارشناسی ارشد دانشگاه آزاد اسلامی واحد تهران- شمال. دانشکده علوم و فنون دریایی. 160 صفحه.

5- صاغ کاسانی، (1380). تعیین میزان برخی فلزات سنجک در عضله کبد، کلیه، آبش و تخمدان ماهی کال فال (Liza auratus) در سواحل جنوبی دریای خزر پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، انتشارات منابع طبیعی و علوم دریایی، 87 صفحه.

6- Abel, P. D., (1989). Water Pollution Biology, Ellis Horwood, Chichester,
7- Bu-Olayan, A. H., (1996). Trace metals in fish from the Kuwait coast using the microwave acid digestion technique. Printed in the U.S.A.