تأثیر تمرین مقاومتی هرمی و ویبریشن تمام بدن بر شاخص‌های آسیب سلولی (AST, ALD, CK) در مردان غیر ورزشکار

عبدالرسول بحرانی،* دکتر محمد علی آذرآبایی، خلیل شیخیانی، فاطمه جمیری

چکیده
هدف از مطالعه حاضر بررسی تأثیر تمرین مقاومتی هرمی و ویبریشن تمام بدن بر شاخص‌های آسیب سلولی (CK و ALD, AST) در مردان غیر ورزشکار بود. در این مطالعه، دو گروه تمرینی ساخته شدند. گروه 1 تمرین ویبریشن و گروه 2 تمرین هرمی بودند. در تمرین هر گروه، تمرین‌های ویبریشنی و هرمی در دو روز هفته با همدیگر صورت می‌گرفتند. نتایج نشان کردند که تمرین هر 2 گروه کاهش سطح گیمری و کاهش SHBG را موجب کرده و این امر به بهبود سلامتی سلولی نیز مربوط بود.

*مهم‌ترین مسئول: bahrami.nasol@gmail.com

1 - کارشناس ارشد فیزیولوژی ورزشی، دانشکده علوم و تحقیقات فارس
2 - دانشیار دانشکده تیپات بازی و علوم و ریشه، دانشگاه آزاد اسلامی واحد تهران مرکز
و قدرت عضلات، برای بهره‌گیری بهینه از تمرین‌های ورزشی یا هدف افزایش قدرت و حجم عضلات بهتر است که از تمرین‌های ورزشی مقاوی و یا ترکیبی با شدت بالا استفاده شود و با اینکه تمرین‌های ویبریشن تمام بدن باعث افزایش قدرت عضلاتی شده اند، پیشنهاد می‌شود که این تمرین‌ها تنها در شرایطی استفاده شود که هدف، بهبود ورزشکار بسیار دیده یا در حین تمرین‌های دوره بازتوانی و یا افزایش چگالی استخوانی و بیوژ جلوگیری از ابتلا به بیماری‌هایی استخوان باشد.

واژه‌های کلیدی: تمرین مقاوی، هرمی، تمرین ویبریشن، تمام بدن، آسیب‌های جلوگیری، بیماری‌های استخوانی.
مقدمه

هر چند از دیدگاه برای آماده سازی ورزشکاران، شیوه‌های مختلف تمرین مقاومتی مورد استفاده قرار می‌گرفته است؛ اما امروزه استفاده از تمرین‌های مقاومتی در بین مردم عادی بسیار رواج یافته است. همچنین از ورزش‌های مقاومتی به طور گسترده در برنامه‌های بازتوانی استفاده می‌شود و به عنوان یک روش یا الگوی تمرینی مهم برای سلامتی شناخته شده‌اند. بنابراین سخت و کارهایی که تاثیر انواع تمرین‌های مقاومتی را در رشد عضلانی‌ی-اسکلتی تبیین می‌کنند، مهم و هم‌هماره مورد توجه بوده است. یکی از روش‌های تمرین مقاومتی، روش تمرین قدرتی هرمی است. این روش باعث ایجاد هایپرپلژی و افزایش حجم و قدرت در عضلات می‌شود و به طور گسترده در باشگاه‌های ورزشی اندام و بدن‌سازی مورد استفاده قرار می‌گیرد (۴). در هر حال، ورزشکاران و مربیان هم‌هماره به دنبال روش‌های نوینی هستند تا با هزینه کمتر، انرژی و صرف زمان کمتری، به نتیجه پهلوی دست یابند.

تلاش‌های اخیر دانشمندان علوم ورزشی باعث خلق دستگاه ویرشینین (WBV) شده است. این دستگاه یک دستگاه ایجاد محرک مکانیکی است که تحریک‌ها را به صورت حرکات نوسانی به تمام بدنی می‌فرستد و امروزه به عنوان روش تمرینی در حوزه‌های مختلفی از جمله: بهبود عملکرد ورزشی، بازتوانی و بهبود آسیب‌ها و نیز بهبود سلامتی و آمادگی جسمانی به کار گرفته می‌شود (۲۷). در زندگی روزمره، جاذبه زمین به طور کلی بخش اعظمی از تحریک‌های مکانیکی را باعث می‌شود که مسئول رشد و توسعه ساختار عضلات است. از سوی دیگر، برنامه‌های ویژه تمرین‌های قدرتی و توان انفجاری با تغییر میزان و سرعت تغییرات شتاب جاذبه همراه هستند. که این موضوع به تحریک‌های بیشتر جاذبه زمین برای بهبود فاکتورهای آمادگی جسمانی

1- Whole Body Vibration

۱۲
می‌تواند تغییرات شرایط جاذبه را ایجاد کند (16، 17، 19، 29). این بدان معناست که افراد با کمک تمرین‌های ویبریشن تمام بدن (WBVT) محیط‌های بیشتری را نسبت به فعالیت‌های روزانه متحمل می‌شوند (16، 17، 19).

در WBVT شخص بر روی سکوی دستگاه ویبریشن (که لرزش‌های عمومی سینوسی شکلی را ایجاد می‌کند) وضعیت‌های بندهای مختلفی را می‌گیرد و تا پایان زمان تمرین، همان وضعیت را حفظ می‌کند و دستگاه ویبریشن قابل تنظیم در فرکانس‌ها و شدت‌های مختلف است (13-16). از جمله تأثیرات مختلف این روش تمرینی که در مقاله‌ها و مقالات بی‌گوناگون به چهار روش‌دانسته، می‌توان به مواردی چون: 

- کوتاهی زمان تمرین، افزایش قدرت عضلانی، بهبود انعطاف‌پذیری، بهبود دستگاه عصبی، تسكین و کاهش درد، افزایش چگالی استخوان، افزایش هورمون‌های گلویی (تستسترون، هورمون رشد، سروتونین)، ماسی و ریلکسین بدن، کاهش هورمون کورتیزول (هرمون‌های استرسی)، افزایش هماهنگی و تعادل بدن و کاهش خستگی تأثیری اشاره کرد (15، 16، 19، 21).

فعالیت بدنی و ورزش با سازگاری های فیزیولوژیک همراه است. شناخت و بررسی این سازگاری‌ها بیشتر در سیستم آنزیمی که نقش مهمی در واکنش‌های حیاتی بدن دارند - بسیار مهم و قابل توجه است؛ زیرا بر اثر انجام دادن ویبریشن‌های گوناگون و ورزشی، آنزیم‌ها دچار تغییرات مختلفی می‌شوند که شناخت این تغییرات در تفسیر ساخت و کار‌های فیزیولوژیک بدن مؤثرند. به هر حال، ورزش در هرمزمان با نقش مشابهی که در ایجاد سازگاری‌های فیزیولوژیک دارد، می‌تواند با آسیب‌های سلولی نیز همراه باشد؛ چنان‌که عضله ممکن است بر اثر فعالیت‌های شدید دچار آسیب شود.

1- Whole Body Vibration Platform
2- Whole body vibration training
و محتویات آن بیوژه برخی آنزیم‌ها به درون خون انتشار یابند. به همین علت تغییرات سرمی این آنزیم‌ها به عنوان عکس عمل عضلانی مطرح هستند (21).

از سوی دیگر، در برخی آنزیم‌های عضلانی یا مستقل از آن، تغییرات ترمیمی رشدی مختلفی فعال می‌شوند که در بحث سازگاری‌ها مورد توجه هستند. از جمله این‌ها تغییرات، هورمون‌های آنابولیک و عوامل رشدی هستند که در افزایش همیشه گزینه‌های رشدی بافت موثر هستند (5، 6) و تفسیر تغییرات آنها در پرتو پاسخ‌های فیزیولوژیک ناشی از ورزش، بسیار حائز اهمیت است. با وجود اینکه پروتئین‌ها در این زمینه روبره‌گسترش است؛ اما هنوز نقش فیزیولوژیک بسیاری از این عوامل و پاسخ و سازگاری حاصل از ورزش در آنها ناشناخته مانده است.

انرژی مورد نیاز برای عملکرد اندام‌های گوناگون بدین طور برخی و اکتشافات شیمیایی آزاد می‌شود که آنزیم‌ها در تسریع این واکنش‌ها موثرند (9). از جمله این آنزیم‌ها به هنگام فعالیت ورزشی، آسیب‌اتنات آمینوترانسفراز (AST) است که در کبد، عضلات اسکلتی، قلب و مغز یافته می‌شود. این آنزیم در سوخت و ساخت آمینو اسیدها (انتقال آمین) و گلیکوئسترنز نقش دارد (1). به هنگام آسیب عضلانی به دلیل تغییرات غشای سلول عضلانی، مقادیر سرمی این آنزیم افزایش می‌یابد (32). آن‌دلارزا (ALD) نیز از آنزیم‌های مهم راه گلیکولیز است و فروکتوز ۱-۶ دیفسات را به دو مولکول تریوز تبدیل می‌کند (1). این آنزیم درجه‌بند تشخیص آسیب عضلانی اسکلتی نشانگر خوبی است؛ چون آلودگی به طور غالب در عضلات اسکلتی یافته می‌شود (12). در کنار این دو آنزیم، کراتین کیناز (CK) نیز تولید بر اثر آنزیم به مسیر انتقال فسفات ATP را به وسیلهٔ گلیکوزیز است و حساس ترین شاخص آسیب عضلانی است (13). بنابراین آفزایش هم‌زمان AST و ALD در سرمی می‌تواند نشانه آسیب عضلانی باشد (13).
انجام دادن فعالیت‌های شدید باعث ظاهر آنزیم‌های عضلانی در داخل خون می‌شوند که ممکن است به دلیل آسیب سلول عضلانی و یا افزایش نفوذ پدیده غشای سلولی در حیض فعالیت و یا پس از آن باشد (21). پژوهش‌های گوناگونی افراش فعالیت این آنزیم‌ها را (بی‌پدید پس از انجام دادن فعالیت‌های استقامتی) نشان داده است (25، 31، 32). اما درباره بررسی پاسخ و سازگاری یافته‌های فیزیولوژیک این آنزیم‌ها پس از انجام دادن تمرین و پرپریشی تیم بدن و همچنین ترکیب تمرین مقاومتی همراه با ویبریشن تیم بدن مطالعه‌ای وجود ندارد. با فرض اینکه پاسخ و سازگاری فیزیولوژیک این آنزیم‌ها به تمرین مقاومتی هرمی و ویبریشن تیم بدن و همچنین ترکیب تمرین مقاومتی همراه با ویبریشن تیم بدن می‌تواند منتفیت باشد، لذا در این پژوهش، پژوهشگر در صدد است تأثیر تمرین مقاومتی هرمی (AST, ALD, CK) را در مردان غیر ورزش‌کار مورد بررسی قرار دهد.

روش شناختی پژوهشی

این پژوهش از نوع پیش‌بینی است و با توجه به اهداف و استفاده از نمونه‌های انسانی و کنترل نشدن تمرین متغیرها مزاحم، به روش نیمه تجربی و طرح پیش آزمون و پس آزمون در دو گروه تجربی و یک گروه کنترل انجام شد. جامعه آماری مردان سالم شهر بوشهر با دامنه سنی 20-70 سال بودند. 40 نفر از جامعه مذکور به صورت داوطلبانه به عنوان نمونه آماری انتخاب شدند. آزمودنی‌های این پژوهش از سلامت جسمانی کامل برخوردار بودند (تأثیر پزشک) و سابقه تمرین مقاومتی و بدنسازی و ورزشی نداشتند. پیش از دستگذاری متغیرهای مستقل (تمرین مقاومتی هرمی، تمرین ویبریشنی
تمام بدن و تمرین مقاومتی هرمی همراه با ویریشن تمام بدن) آزمودنی ها پیش آزمون را (نمونه برداری خونی) انجام دادند. به منظور اندازه گیری ترشح و غلظت آنزیم‌های کراتین کیناز، آلدوز و آسیپتات آمینوتراوتسفراز، از نمونه‌های خون ورد بیانی آزمودنی‌ها استفاده شد. پس از آن آزمودنی‌ها به صورت تصادفی به چهار گروه تمرین مقاومتی هرمی، تمرین ویریشن تمام بدن، تمرین مقاومتی هرمی همراه با ویریشن تمام بدن و کنترل (هر گروه 10 نفر) تقسیم شدند. سپس گروه تجربی تمرین هر می برای مدت شش هفته، سه جلسه در هفته در شش ایستگاه به تمرین پرداختند. در ابتدا در ست اول وزنه که 50 درصد ذره تکرار بیشینه (Delorme) یا 10RM (10RM) فرد است در 10 تکرار زده می‌شود و در ست دوم 75 درصد 10RM در 10 تکرار فرد در 10 تکرار زده می‌شود و سرانجام در ست آخر 100 درصد 10RM فرد در 10 تکرار زده می‌شود (200). یک تکرار بیشینه (حداکثر قدرت) آزمودنی‌ها با استفاده از فرمول و از تکرارهای زیر بیشینه برآورد شد. براییگی در سال 1993 ایکی از معادله‌های متداول را که برای برآورد یک تکرار بیشینه مورد استفاده قرار می‌گیرد، اراسته داد. این معادله می‌تواند برای تکرارهای زیر بیشینه استفاده شود که تعداد آنها از 10 کمتر است. برای استفاده از این آزمون، آزمودنی‌ها با جایی یک وزنه زیر بیشینه را تا حد خستگی می‌کنند و سپس با توجه به معادله زیر حداکثر قدرت (یک تکرار بیشینه) اورای آن حرکت برآورد می‌شود (101).

$$\text{وزنه جایگذاریشده} = \frac{10278}{\text{تعداد تکرار اکستنشیون}} - 10278$$

حرکات منتخب در شش ایستگاه شامل؛ کشش جانبي، پرس پا، پشت یا جلو بازو و پشت بازو انجام گرفت. در ابتدا به کمک معادله فوق یک تکرار بیشینه 1- repeated maximum

17
آزمودنی‌ها در هر حرکت مشخص شد و سپس با محاسبه 50 درصد و 75 درصد، یک تکرار بیشینه تمرين‌های مقاومتی انجام گرفتند. فاصله استراحت بین سه تا توجه به منابع و با توجه به اینکه در روش های آپراتویی علی رغم خستگی باید به تکرار حرکات ادامه داد دو دقیقه در نظر گرفته شد (37).

گروه تجربی تمرين و پیشین تمام بدن یک دوره تمرين و پیشین تمام بدن استاندارد شده را (که شامل 5 دقیقه تمین در هر روز بود) انجام دادند (11). این برنامه تمرينی شامل ایستادن بر روی دستگاه و پیشین با فراکس 30 تا 45 هرثز، دامنه 10 میلی متر در 5 وضعیت بدنی مختلف به شرح ذیل بود: 1- حال استنشاق مستقیم 2- اسکات 90 درجه در زاویه 3- اسکات 90 درجه زاویه چرخش خارجی پاها 4- اسکات 90 درجه روی پای راست و 5- اسکات 90 درجه روی پای چپ. مدت تمرين در هر وضعیت بدني با 90 ثانیه در هر وله بیا فواصل استراحتی 40 ثانیه بود (جدول 1).

گروه تجربی تمرين مقاومتي هرمي همره با وپيريشن تمام بدن تمرين‌های مشابه با گروه تجربی مقاومتي هرمي را انجام دادند با این تفاوت که ازمودنی‌ها این گروه یک دوره تمرين و پیشین تمام بدن را نيز مطالب با گروه تمرين و پیريشن تمام بدن انجام دادند. آزمودنی‌ها این گروه در هر جلسه تمرين ابتدا تمرين و پیشین تمام بدن مربوط به آن جلسه و سپس برنامه تمرينی مقاومتي هرمي مطالب با آن جلسه را انجام مي‌دادند.

گروه کنترل در طول اين مدت تنها فعالیت های روزمره خود را انجام مي‌دادند. 

پس از آخرین جلسه تمرين گروه‌های تجربی، از هر سه گروه تجربی و گروه کنترل پس آزمون (نمودن برداري خوني) گرفته شد. نمونه‌های خوني در درجه حرارت 80 درجه سانتی‌گراد فريز شدند و برای سنجش متغيرهای وابسته هومونين به آزمایشگاه تجزيه بيوشييمي انتقال یافتند و تحت تجزيه و تحليل قرار گرفتند. اندازه‌گيری آزمایشگاه IFCC انجام گرفت. آنژيم آسبيات آمينوترانسفراز سرم با استفاده از روش آنژيمي‌تيك انجام گرفت. آنژيم
آن‌دوم‌الز سرم با استفاده از روش آنزیماتیک فرابنفش اندام‌های گیری و اندازه‌گیری آنزیم کراتین کیناز سرم (که در پژوهش حاضر این آنزیم در داخل سرم بود) با استفاده از روش آنزیماتیک کینتیک انتی‌موم IFCC/DGKC به پایان رسید.

جدول ۱: برنامه تمرین و بریشین تامم بدن

| هفته تمرین | دوم | سوم | چهارم | پنجم | ششم | هفتم | هشت | نهم | دهم | اول | WBVT منتهی
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۳ × ۲۰ Hz</td>
<td>۵ × ۴۰ Hz</td>
<td>۲ × ۲۵ Hz</td>
<td>۵ × ۲۵ Hz</td>
<td>۲ × ۳۰ Hz</td>
<td>۵ × ۲۵ Hz</td>
<td>۲ × ۳۰ Hz</td>
<td>۵ × ۲۰ Hz</td>
<td>۲ × ۲۵ Hz</td>
<td>۵ × ۲۰ Hz</td>
<td>۲ × ۲۵ Hz</td>
</tr>
</tbody>
</table>

با استفاده از آزمون کولومگروف اسیمپسون، تعیین نرمال بودن متغیرها در گروه‌های پژوهش انجام گرفت، سپس به منظور تجزیه و تحلیل اطلاعات از آزمون‌های آمار توصیفی و برای مشخص کردن اختلاف بین پیش آزمون و پس آزمون در سه گروه از آزمون آماری آنوا دو راه (۲ × ۳) با آزمون تعقیبی شفه و همگنین برای مشخص کردن ارتباط معنی‌دار بین متغیر‌های وابسته از روش آماری ضرب تبیگی پیرسون در سطح ۰/۰۵ ≤ α استفاده شد.

یافته‌های پژوهش:
مشخصات فردی آزمودنی‌ها به تفکیک گروه در جدول ۲ قابل مشاهده است:

جدول ۲: مشخصات فردی آزمودنی‌ها به تفکیک گروه

<table>
<thead>
<tr>
<th>سن (سال)</th>
<th>وزن (کیلوگرم)</th>
<th>قد (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۲/۱۲ ± ۲/۴۴</td>
<td>۷۴/۷۲ ± ۲/۴۴</td>
<td>۱۷۳/۸۴ ± ۵/۲۲</td>
</tr>
<tr>
<td>۲۲/۱۲ ± ۲/۴۴</td>
<td>۷۴/۷۲ ± ۲/۴۴</td>
<td>۱۷۳/۸۴ ± ۵/۲۲</td>
</tr>
<tr>
<td>۲۲/۱۲ ± ۲/۴۴</td>
<td>۷۴/۷۲ ± ۲/۴۴</td>
<td>۱۷۳/۸۴ ± ۵/۲۲</td>
</tr>
</tbody>
</table>

۱۹
نتایج تأثیر تمرین‌های مختلف بر شاخص آسیب سلولی (AST) نشان داد که مانند سایر صفات، تعداد آزمون‌های همگن است (109/100 = P). همچنین نتایج آزمون کرویت مولکولی برای تقارن مرکب بین زمان‌ها نشان داد که مفروضه نتایج مرکب وجود ندارد (0/100 = P). نتایج تحلیل واریانس با اندازه‌گیری مکرر برای متغیر شاخص آسیب سلولی (AST) تحلیل معنی‌داری را بین زمان و گروه نشان داد (109/100 = P, P = 19/472 = F). همچنین اثر اصلی زمان معنی‌دار بود (109/100 = P, P = 146/271 = F, ولی اثر اصلی گروه معنی‌دار نبود (109/100 = P, P = 6/281 = F. به منظور بررسی بیشتر در هر گروه دو زمان (پیش آزمون و پس آزمون) توزیع آزمون تی زوجی مورد مقایسه قرار گرفت. برای همچنین برای بررسی بیشتر در هر زمان، آزمون تحلیل واریانس یک راه گروه‌ها را بررسی کرده. جدول 3 نتایج تحلیل واریانس با اندازه‌گیری مکرر همراه با نتایج آزمون‌های تی زوجی و آزمون تحلیل واریانس یک راه را نشان می‌دهد.

جدول 3: نتایج آمار تحلیل واریانس با اندازه‌گیری مکرر، آزمون تی زوجی و آزمون تحلیل واریانس یک راه برای متغیر شاخص آسیب سلولی (AST) در گروه‌های تمرینی مختلف

<table>
<thead>
<tr>
<th>مقایسه درون گروه</th>
<th>پیش آزمون</th>
<th>پس آزمون</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون</td>
<td>/</td>
<td>176/48</td>
</tr>
<tr>
<td>کنترل</td>
<td>/</td>
<td>176/48</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>مقایسه بین گروه</th>
<th>آزمون</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>AST(IU/L)</td>
<td>/</td>
</tr>
</tbody>
</table>

* اختلاف معنی‌دار دار با پیش آزمون
نتایج تاثیر تمرينهای مختلف بر شاخص آسیب سلوئی (ALD) نشان داد که تماریس ورزشی کوریولنس همگن است. همچنین نتایج آزمون کرویت مولفه برای تقارن مکرک در زمانها نشان داد که مفروضه تقارن مکرک وجود ندارد (P = 0/0001). نتایج تحلیل واریانس با اندازه گیری مکرک برای متنگر شاخص آسیب سلوئی (ALD) تعامل معنی‌داری را بین زمان و گروه نشان داد (P = 0/00004). 

مقدار های ثابت اصلی زمان معنی‌دار بود (P = 0/169999876)، F = 0/019999876. لیکن اثر اصلی گروه معنی‌دار نبود (P = 0/00001699999876). به منظور بررسی پیشتر در هر گروه دو زمان (پیش آزمون و پس آزمون) با استفاده از آزمون تی زوجی مورد مقایسه قرار گرفت. همچنین برای بررسی پیشتر در هر گروه یا پیش آزمون مورد بررسی قرار گرفتند. جدول 4 نتایج تحلیل واریانس با اندازه گیری مکرک همراه با نتایج آزمونهای تی زوجی و آزمون تحلیل واریانس یک راهه را نشان می‌دهد.

جدول 4: نتایج آمار تحلیل واریانس با اندازه گیری مکرک، آزمون تی زوجی و آزمون تحلیل واریانس یک راهه برای متنگر شاخص آسیب سلوئی (ALD) در گروه‌های تمرينی مختلف

<table>
<thead>
<tr>
<th>مقایسه درون گروه</th>
<th>پیش آزمون</th>
<th>پس آزمون</th>
<th>گروه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تمارینهای هم‌نیاز</td>
<td>0/00001699999876</td>
<td>0/00001699999876</td>
<td>0/00001699999876</td>
</tr>
<tr>
<td>تمارینهای یونیورسال</td>
<td>0/00001699999876</td>
<td>0/00001699999876</td>
<td>0/00001699999876</td>
</tr>
<tr>
<td>تمارینهای ترکیبی</td>
<td>0/00001699999876</td>
<td>0/00001699999876</td>
<td>0/00001699999876</td>
</tr>
</tbody>
</table>

* اختلاف معنی‌دار دار با پیش آزمون، † اختلاف معنی‌دار با گروه کنترل

* 21
نتایج تاثیر تمرین‌های مختلف بر شاخص آسیب سلولی (CK) نشان داد که ماتریس ورزش‌های کروی‌ساز هم‌گون است (P = 0/0439). همچنین نتایج آزمون کرویت‌مَوْخِل برای تقارن مرکب بین زمان ها نشان داد که مفروضه تقارن مرکب وجود ندارد (P = 0/11). نتایج تحلیل واریانس با اندوزه گیری مکرر برای متغیر شاخص آسیب سلولی (CK) تعامل معنی داری را بین زمان و گروه نشان داد (P = 0/0006). همچنین اثر اصلی زمان معنی دار بود (P = 0/006). اثر اصلی گروه معنی دار نبود (P = 0/8296). آزمون تی زوجی جهت بررسی تأثیر در هر گروه دو زمان (پیش آزمون و پس آزمون) آنها را مورد مقایسه قرار داد. همچنین به منظور بررسی بیشتر در هر زمان، آزمون تحلیل واریانس یک راهه گروهها را مورد بررسی قرار داد. جدول 5 نتایج تحلیل واریانس با اندوزه گیری مکرر همرام با نتایج آزمون‌های تی زوجی و آزمون تحلیل واریانس یک راهه را نشان می‌دهد.

جدول 5: نتایج آمار تحلیل واریانس با اندوزه گیری مکرر، آزمون تی زوجی و آزمون تحلیل واریانس یک راهه برای متغیر شاخص آسیب سلولی (CK) در گروه‌های تمرینی مختلف

<table>
<thead>
<tr>
<th>مقایسه درون گروهی</th>
<th>پس آزمون</th>
<th>پیش آزمون</th>
<th>گروههای تمرینی</th>
<th>تمرین‌های هم‌گون</th>
</tr>
</thead>
<tbody>
<tr>
<td>تمرین‌های هم‌گون</td>
<td>12.23 ± 3.64</td>
<td>10.93 ± 3.14</td>
<td>7.68 ± 3.64</td>
<td>10.00 ± 1.00</td>
</tr>
<tr>
<td>تمرین‌های یوپه‌سی</td>
<td>12.54 ± 3.64</td>
<td>10.93 ± 3.14</td>
<td>7.68 ± 3.64</td>
<td>10.00 ± 1.00</td>
</tr>
<tr>
<td>تمرین‌های تکمیلی</td>
<td>12.23 ± 3.64</td>
<td>10.93 ± 3.14</td>
<td>7.68 ± 3.64</td>
<td>10.00 ± 1.00</td>
</tr>
</tbody>
</table>

* اختلاف معنی‌دار با پیش آزمون

22
بحث و نتیجه گیری

هدف از انجام دادن مطالعه حاضر بررسی تاثیر تمرين مقاومتی هرمی و وبریشن (AST, ALD, CK) در مردان غیر ورزشکار بود. نتایج مطالعه حاضر نشان داد که پس از انجام دادن تمرين‌های مقاومتی هرمی و وبریشن تمام ناسالمان و تمرين‌های تركيبی افزایش مفعني داري در هره مراجعات آسيب سلولی (CK) و ALD و AST ايجاد شد. نتایج اين مطالعه هرمنستا با نتايج مطالعات پيشين است که افزایش شاخص را پس از انجام تمرين‌های گزارش كرده ان (21). 24.00.25 گزارش نكرده اين مطالعه هرمنستا نبودن نتایج مطالعات حاضر با نتايج مطالعات سونيگ (1990) و تسوکاموتو (2001) و مي تواند وجود تفاوت در جنس و سابقه تمرين آزمودنیها و نوع تمرين‌های انجام گرفته شده باشد.

در مطالعات، گزارش شده که انجام دادن فعاليت‌های شديد، باعث تظاهر آنزيم‌های عضلانی در داخل خون می‌شود که ممکن است به دلیل آسيب سلول عضلانی و يا افزایش نفوذ پذیری غشای سلولی در حین فعاليت و يا پس از آن باشد (8). از جمله اين آنزيم‌ها، آنزيم‌های مورد مطالعه در پژوهش حاضر هستند که افزایش شهری هم‌زمان آنها می‌تواند نشانه آسيب عضلانی باشد (7). همانطور که نتايج اين مطالعه نشان داد، آزمودنیها پس از شرکت در يک برنامه تمرين مقاومتي شش هفته‌اي افزایش معنی‌داري را در اجراي يك تكرار بيشينه حرکات تمرين سه نشان داده. در تمام مقالات پست تلویزی ورزشي و فعاليت بدني و علم تمرين به خويش مستند شده كه تمرين‌ها مقاومتي مي‌تواند باعث هايپرتروفی عضلانی و افزایش قدرت عضلانی شوند. يكي از اهداف برنامه‌های تمرين مقاومتی ايجاد هايپرتروفی عضلانی و افزایش
قدرت است. به طور قطع انجام دادن تمرين‌های مقاومتي با ايجاد آسيب و پارگي‌های ريز عضلانی همراه است تا اصطلاحا فرايند آنزيم‌زير (رگ زايب) و افزايش سطح مقطع تارهای عضلانی (هيپيرتروفي) و يا افزايش تعداد تارهای عضلانی (هيپيربلازى) رخ دهد (6، 7) و اين است که آسيب‌های ريز عضلانی است که كوفنتزي‌های عضلانی حادت مي‌شود و سرانجام به نمو‌دار شدن هيپيرتروفي و هيپيربلازى قدرت مي‌انجامد.

در مقالات و ملتوين علمي ورژشي مستند شده که آسيب عضلانی مي‌تواند باعث رهايش آنزيمي‌های خاص از بافت عضله به درون ماليك ميان بافت و از آنجا به درون خون شود. يكي از اين آنزيم‌ها، آسباراتين آمينو ترانسفراز نام دارد. آنزيم AST تحت عنوان گلوتامات اجزالواستات ترانس آميناز (GOT) 1 نيز خوانده مي‌شود، و اکنون زير Ra كاتاليز مي‌كند:

ال- گلوتامات + آگزالواستات \[\rightarrow\] آلفا كنتوگلوتاترات 2 ال - آسباراتين

آلفا كنتوگلوتاترات يكي از شركت كننده‌هاي مهم در جرخه كريس است (8). SLOL-HAI بدن، حاوي مقدار فراوان از آمينوتراتافراز هستند. آزینيزيم‌ها در سيتوپلاسم سلول‌ها (m-AST) و علاوه بر آن در ميتوکوندريها (m-AST) نيز وجود دارند؛ لذا در آسيب‌های جرخه وارد به سلول (که موجب افزايش مي‌شود) خويسته مي‌كند.AST اين آسفيني اين مربوط به آزاد شدن آن از سيتوپلاسم سلول است؛ در حالی که در صدمه‌هاي شديد سلولی، موجب آزاد شدن اين آنزيم از ميتوکوندريها نيز خواهد شد.

در برخی، مطالعات گزارش شده که فعاليت‌های ورزشي نباید افزایش سطوح آمينوتراتافراز (پروپزهAST) مي‌شود (7). برخی از پژوهشگران افزایش ترانس آميناز را با دليل وقوع آسب عضلانی پس از تمرين دانسته‌اند. در ورزشي‌هاي كه وزن بدن تحمل نمي‌شود، مانند دوچرخه سواري نيز باقی‌آمده پس از فعاليت، سطوح 1- Glutamat oxaloacetate transaminase
بالآیه از انزیم AST را نشان می‌دهند. در ورزش‌های استقامتی، کوتاه مدت شدید و تمرین‌های برون‌گرای با فاصله به‌پرس از تمرین مقدار، مقداری آنزیم کراتین‌کیناز که به نام کراتین فسفوکیناز (CPK) نیز معروف است، فراورده‌بی‌فازیون کراتین به وسیله ATP را (برای تشکیل فسفوکراتین) تسریع می‌کند.

ATP + کراتین ⇌ فسفوکراتین + ADP

سطح کراتین کیناز در افراد سالم به سنتوده، گوناگون شده و بدون جریبی بدن و فعالیت بدنی به‌پسندی دارد. از اوایل و همکاران (1956)، نخستین بار از کراتین کیناز سرم، به عنوان کمک تشخیصی در دیستروفی عضلانی پیشرفت استفاده کردند (18). از آن زمان به عنوان یک نشانگر بالینی مهم برای اسپین عضلانی استفاده شده است. بعضی از علل رایج افزایش در Serm و روند دیستروفی عضلانی (19)، تزیین درون عضله ای Serm، و روند شدید (20). نارسایی قلبی (22)، دیستروفی عضلانی و پلی میوپاتی (24) است. این افزایش فعالیت این انزیم‌ها می‌تواند در تشخیص انفارکتوس میوکارد و بیماری‌های عضلانی کمک مؤثری باشد. در مواردی از پارکینسون، سرطان عضلانی، این انزیم به خارج از سلول نشته می‌کند. این اتفاق ممکن است به اثر نوین آسیب عضلانی رخ دهد. پس از عمل جراحی، سطح CK ممکن است به 1000 تا 20000 IU/L و زمانی که آسیب سختی وجود داشته باشد، این سطح ممکن است به 100000 IU/L یا بیشتر برسد.

بنابر این، گزارش‌ها، که برای تشخیص بیماری‌های عضلانی، "کراتین کیناز" مطمئن ترین معیار است، زیرا افزایش مقدار آن تقریباً مختص بیماری عضلات مختلط (عضلات اسکلتی و میوکارد) بوده و به نظر می‌رسد که حساسیت مقدار آلدولاز نیز به همان اندازه باشد؛ اما از ویژگی کمتری بیماری‌های خودروگر است. برای تشخیص بالینی بیماری‌های عضلانی باید هر دو انزیم اندوز و کراتین کیناز مورد اندازه‌گیری قرار گیرد.

1- Ebashi et al
2- Polymyositis

25
گیرند (۸). هرگاه مقادیر هر دو غیر طبیعی باشند، آن گاه می‌توان نتایج حاصل از معاینه‌های بالینی را با اطمینان بیشتری تفسیر کرد. این دو آزمایش به تحقیق سریع‌ترین عللی علائم شایع‌تر بالینی که می‌کند و امکان دارد سرنخ‌های مفیدی برای تشخیص زنان حامل بیماری باشند. این دو آزمایش در تشخیق افتراقی سایر بیماری‌های عضلانی و در ویژگی‌های بیماری‌های التهابی عضلات، حالت آمیت هستند. آلدوزول به همراه کراتین کیناز در تشخیص اختلال‌های عضلات اسکلتی شاخص‌های مفیدی هستند (۸). کراتین کیناز عدم‌داده در علائم اسکلتی عضله قلبی و مغز و به میزان خیلی کم در سایر بیماری‌ها وجود دارد. فعالیت سرمی این آنزیم در تمام دیستروفی‌های عضلانی بالا می‌رود و میزان آن به توده عضلانی (که دیستروفی می‌شود) بستگی دارد. گرچه کراتین کیناز در آنفاغکنس خیلی نیز بالا می‌رود، اما این افزایش برای مدت کوتاهی است و احتمال اشتایه گرفتن آن با نقص عضلات اسکلتی وجود ندارد (۸). آلدوزول نیز در غلفت‌های بالا در علائم اسکلتی وجود دارد و می‌تواند نتایج حاصل از سنگین کراتین کیناز را حمایت کند. اگرچه آلدوزول در بسیاری از بافته‌های دیگر نیز به چشم می‌خورد، اما نه با چنین غلفت بالایی که در علائم اسکلتی وجود دارد. نکته مهم وجود غلفت بالای آلدوزول در سلول‌های قرمز خون است؛ بنابراین ضروری است که نمونه‌سنجی شامل سلول‌های قرمز خون نبایش (۸).

در مطالعات مختلف گزارش شده که تمرین‌های ویبریشن تمام بدن تنان افزایش قدرت عضلاتی را دارند (۲۷). در مطالعه حاضر نیز نتایج نشان دادند که تمرین‌های ویبریشن تمام بدن، باعث افزایش قدرت عضلات شده‌اند. یک دلیل احتمالی برای افزایش قدرت ماهیم شده در گروه تمرین‌های ویبریشن تمرین بدن در این مطالعه می‌تواند افزایش فراوانی واحدهای حرکتی به طور همزمان باشد. نشان داده شده
که تمرین‌های وبریشین تمام بدن شاخص‌های درک فشار (RPE) و سطح لاتکت خون را افزایش می‌دهد (28)، این فرآیند می‌تواند باعث به‌هم‌بود تحريك پذیری عصبی- عضلانی و فراخوانی واحدهای حركتی بیشتر شود. به علاوه فعالیت هم‌زمان عضلات سینتراست اندام‌های تحتانی یا افزایش پذیری عضلات آنتاگونیست‌ها که باعث فعال شدن رالف‌کس کم‌شکلی یا بوجود می‌آید نیز ممکن است نتیجه‌گیری دست آمده حاضر را توجیه کند (34). این احتمال وجود دارد که تمرین‌های وبریشین تمام بدن با ایجاد پارگ‌های ریز در عضلات اسکلتی، باعث ظهور آنزیم‌های شاخص آسیب سلولی در خون شده باشند و در نتیجه باعث افزایش معنی‌دار این آنزیم‌ها نسبت به پیش از تمرین‌ها شده باشند.

نتایج این مطالعه تفاوت معنی‌دار در شاخص‌های آسیب سلولی پس از انجام دادن تمرین‌های مقاومتی هرمی و وبریشین تمام بدن و تمرین‌های ترکیبی نشان نداد.

با احتمال می‌توان چنین نتیجه‌گیری کرد که تمرین‌های مقاومتی هرمی و وبریشین تمام بدن و یا به صورت ترکیبی به طور مساوی توانایی افزایش قدرت عضلانی را دارند؛ لذا میزان آنزیم‌های اندام‌های گیری شده (که شاخص آسیب عضلانی هستند) در این تمرین‌ها تفاوت معنی‌داری نداشته است.

نتیجه‌گیری نهایی

در مجموع و با در نظر گرفتی یافته‌های پژوهش حاضر جنین نتیجه‌گیری می‌شود که تمرین مقاومتی هرمی و وبریشین تمام بدن و ترکیبی آثار مشابهی در پروب شاخص‌های آسیب سلولی (CK، ALD، AST) و مستند افزایش شاخص‌های آسیب سلولی پس از تمرین‌های با هایپرتروفی عضلانی و

1- Rate of perceived exertion
2- Stretch reflex

۷۷
قدرت عضلات، برای بهره‌گیری بهینه از تمرین‌های ورزشی با هدف افزایش قدرت و حجم عضلات بهتر است که از تمرین‌های ورزشی مقاومتی و یا ترکیبی با شدت بالا استفاده شود و با اینکه تمرین‌های ویرایشی تمام بدن باعث افزایش قدرت عضلاتی شده‌اند، پیشنهاد می‌شود از این تمرین‌ها تنها در شرایطی استفاده شود که هدف بهبود ورزشکار آسیب دیده، تمرین‌های دوره بارتوانی و یا افزایش چگالی استخوانی و بیوتیجولی گیری از ابتلا به بیماری پوکی استخوان باشد.
منابع

1- دانیال زاده، آ. و زارعیان، خ. (1380). اصول زیست شیمی، مرکز نشر دانشگاهی چاپ دوم.
2- میشیری، ج. (1384). تأثیر تمرین مقاومت و مصرف مکمل کراتین بر شخصیت سرمی آسیب سلولی در مردان غیر وزشکار، رساله دکتری، دانشگاه آزاد علوم و تحقیقات.
3- بومیا، ت. (1385). زمان بندی تمرین. ترجمه معرفت سیاه کوهیان و دکتر حمید آقا علی نژاد و دکتر حمید رجبی. انتشارات دنیای حركت.
4- گاینر، خ. و رجبی، ح. (1388). آمادگی جسمانی. انتشارات سمت.
5- رودس، ر. و همکاران. (1376). فیزیولوژی بدن انسان. ترجمه حمیده علمی غروی و همکاران.
6- انتشارات مدرسه. تهران.
7- ویلسنر، ج. اچ و دوبید، آل. ک. (1369). فیزیولوژی ورزش و فعالیت بدنی. ترجمه همدانی و همکاران. جلد اول و دوم. انتشارات مبتکران. تهران.


