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1 INTRODUCTION

ABSTRACT

In this paper, the nonlinear transient vibration of a cylindrical shallow panel t
lateral white noise excitation is studied. The panel is in contact with a non

viscoelastic medium. Since thexternal load is a time varying random wide be
process, deterministic and conventional approaches cannot be used. Inste
evolution of the probability density function of the response is investigatec
compute the density function, the famous Mo@tarlo simulation is employed whil
its correctness for this specific application is validated with another wor
literature. The governing equation is rewritten to a non dimensional format; s
the results can be applied to a wide range of pasdecifically, the transien
behavior is investigated with respect to the quasi slenderness ratio and tt
dimensional mean value of lateral load. As expected, both the simple de
oscillation and unstable jumping phenomenon are seen relative to Ithes &t
prescribed parameters. Finally, the joint probability density function of the resjy
is drawn that give someone an idea about the quality of the response in the
plane. © 2017 IAU, Arak Branch All rights reserved

Keywords : Circular panels; Shallow shells, Montarlo simulation; Randorr
vibration; Non aging materials

HE cylindrical shallow panel is one of the most basic ingredients in mechanicatsere and civil
structures. The fuselages of some these engineering applications such as coastal buildings and smart structures

are in contact with viscous media such as soil, clay, resin, mud, rubbers and recently smart isolating materials. These
materals show viscoelastic response due to even constant loads. Of course, many interaction loads applied to these

prescribed structures are inherently changing in time and space randomly. Fluid solid interaction loads, seismic and

transport loads are some exaes of these essential random sources of forces. In many of the cases mentioned

above, it is essential to consider both the transient and steady state accurate vibration analysis of panels and shells to
investigate the dynamic response, stability andgper&nce of the whole structure.
Linear and nonlinear vibrations of thin walled structures such as shells, panels and plates have been vastly

studied in literature for two past decades. A complete study on the geometrically nonlinear vibrations anddynamic

of circular cylindrical shells and panels, with and without flsiclicture interaction was done by Amabili et al. [1].

Paéldoussi s
Kubenko and Koval édchuk [3]. A review on

done

by

[ 2] worked on the stability of
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contact with aerodyamic forces was done by Mei et al. [4]. In above references, all the studies are analytic or
numeric conventional deterministic investigations.

In the case of transient response analysis of thin walled structures, several works can be alsdhseen in
literature. For example, using the modal expansion technique, Abrade [5] studied the transient response of the
beams, plates and shells to certain impulsive loads. More recBotifaghi and Shakeri [6] studied the transient
response of functionally graded piezb ect ri ¢ cyl i ndri cal panels subjected
[7] investigated the dynamic analysis of a laminated hybrid composite plate subjected-tepienelent external
pulsesMany of the above articles and the others in the liteeatused impulsive loads to investigate the transient
vibration of such structures.

The method of solution for stochastic systems is completely different with the ones usually used in deterministic
ones. Generally, the probability density of a variablgtislied rather than the variable itself [8]. This density gives
somebody an idea about the possible presence of a random variable in the working space. Monte Carlo simulation
[9] as one of the famous numeric methods and the Fokker Planck Kolmogorov edl@atias one of the powerful
analytic approaches have been used to obtain the transient and stationary probability density functions. As the semi
analytic methods, the evolution of statistical moments [11] and the averaging method [12] are other nggdisodolo
to study the behavior of such systems. The sources of random force may vary from a wide band stationary process
with several excitation frequencies to a narrow band one with limited specific frequencies [1Thd 3lystem
under study may balsolinear or nonlinear; conservative or non conservative [13].

It is noted that thenmost experimentalstudies of the white noise excitation have been seen in the behavior
investigation of structures against seismic loads such as earthquakes. This is eeaess earthquake, there is a
wide range of excitation frequencies. Of course, in practice, these experiments are done with a wide specific range
of frequencies. For example, in [1e range of 0.5 to 50 Hz was selected while in [15] the range wasebsam
be 1 to 100 Hz.

Other parameters such as the nonlinearity that may come from the large deformations or the material properties
complicate the problem [16]. Although, the developments in humerical simulations in recent decades simplify the
process oimodeling of precise and applicable systems, the nonlinear analysis of randomly excited shallow shells
and circular panels in viscous medium has been less considered in the literature. As a recent work, Asnafi [17] used
a semi static approach to obtain gtability conditions of cylindrical shallow shells in non aging viscous medium.

In this paper, it is tried to evaluate the transient probability density function of the response for a randomly excited
cylindrical shallow panel. Once the probability déygunction is obtained, other statistical properties of response

can be achieved. With reference to this density, the stable damped behavior and unstable jumping behavior are
identified. Despite many articles, here, the transient vibration is investif@tedgeneral white noise excitation

with a wide range of exciting frequencies rather than a deterministic impulsive load. A study on the joint probability
density function is also madg®mebody see the posture of the transient behavior inateespace.

2 THEORY OF THE PROBLEM
2.1 The governing equation of a cylindrical shallow panel in aaging viscous medium

The typical diagram of a simply supported cylindrical shallow panel in a non aging viscoelastic medium is drawn in
Fig. 1. The pnel is elongated along tlyedirection while the lateral loaq, is uniformly distributed over the panel
surface. Due to symmetry and above assumptions, the deflection of the panel is a functoiyo¥We borrowed

the governing equation of vibratiofoag thez axis from [18] and rewrote it by assuming general viscous medium
as:

2
rh*:zl‘zl +D i’! -N ‘2’ TN c®{W} g 1)

wherer andh are the density and thickness of the panel respectivédythe radius of curvature for the middle

plane of the pardgN is the normal implane force per unit length of the panel algndirection, D is the panel
cylindrical stiffnessg is the bed constant ar@( ) is the operator that demonstrates the viscoelastic behavior of the
surroundings. In other words, the ogi@r explains the constitutive equation between the force and deformation in

the assumed medium. In a classic linear viscoelastic medium, the operator gives the resultant force in terms of the
deformation and its rate while in other media it may take rooneplicated form.
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For constant irplane forceN and due to the simply supported constraints, one can computegla@force as
[18]:

Eh 81 ladw %, 1!
N = & Ne— X — Vﬁjx 2
(1-V2)|g@|39dx gj ro @

wherenandEar e t he poissonds ratioectwelyd t he modul us of el ast

To Solve Eq(1), the relation of the uplane forceN, must be first identified. This is because, this term relates to
the function of the deflectiolVi t s el f . Her e, the Galerkinbés method is
partial differential equation. The method is among the best to prepare a weak formula for the partial differential
equation of the continuous vibratory system [19]. Based on the prescribed method, the déflectiobe written
by a series of normal modes obtainezhirthe free vibration analysis of the system. The first and of course the most
effective normal mode is selected and picked up; thus, the defldgtioapproximated by:

W (X, ) :W(t)sinpl—x ©)

with reference to Eq(3), the approximied formulaalso satisfies the boundary conditionSubstitute (3) in (2)
results in:

Q

Ehp?> & _, 817 _
N = W
4(1-v?)? ? p¥ @

By substituting the obtained-lane forceN (Eg. (4)) and the suggested formula for the deflecWrtEq. (3))
into Eqg. (1)and then integration over the panel geometrical domain with emphasis on the properties of orthogonal
functions; one can reach such the following governing equation:

4 2 2 4

p’D . 3pDé&_5 122 _, 32% O¢ N 4
W + W +— W —+ —=C

RERETY &7 8rn A pir ®)

w +

Fig.1
The typical geometry of the cylindrical shallow panel

2.2 Relaxatiorkernel and théoltzmannsuperpositionprinciple

Several models including the famous Kekioigt, Maxwell, Bugers etc. have been presenteth@literature for
viscoelastic media [20, 21]n past two decades, some researchers have tried to introduce a general relation between
the stress and strain in viscoelastic materials using the Boltzmann superposition principle [22, 23].

Based on the Boltzmann superposition principle, for initiatlgefstress rectangular bar under the uniaxial
loading, the stress at any moment of loading time is a function of the history of produced strain [22, 23], i.e.

© 2017 IAU, Arak Branch
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SO =K ¢.)d &) ©

where k" (t,¢) is an integrable funion of t* in any fixed value of timé. For smooth enough functions of stress
and strain, one can use the integration by parts technique to rewrite the Rel. 6 as:

st) =K (L.t) &) —"ﬂjﬁ(t,t*) (@)df @

Ageneral formfork™(t,t')i s defined by using € ancdtherelaeation méasuten g 6 s
J(t.t")as [22, 23]:

K'(t,t)=E({) Y(ti) )
where

Et)=k (f,f)

* * * * * (9)
Jt, )=k (t,t) -k (t,t)
Also the relaxation kernel is defined as [22, 23]:
N I )
Rtt)=—~—5— 10
ED (0

Using Egs.(6-10), one can reach such the following general constitutive equation for a linear viscoelastic
material:

SO=EOGQ) R (1) E)d (a1

The rehxation kernel which is a function of batandt’, is a property of aging materialsging is understood as
a time dependent variation ofechanical propertiesvhich arenot caused by stressgkl]. Temperature effects
general or timaleteriorating #ects damage caused by meltimgd solidification of concreteare some practical
examplesof aging In contrast, plasticity or cracking which astress dependeeffectscanrot be included in this
definition. A goodrelaxation (or inverse of creefiynction can describe the behavior of the aging materkds.
some materials like polymeris,depend on the load duration time-t) rather than botlt, t'). For these materials,
the relaxation kernel is a function aft() which means thathe materialproperties do no influenced from the
reference time of experiment. Therefore, for such materials we have:

SO=E0G ) fRE €) (@) (12

Eqg. (12) is the important general constitutive equation for linear viscoelasticagimy materials wheithe
relaxation kernel is given. Other models of linear viscoelasticity such as stress relaxation, strain creep, hysteresis and
famous models can be extracted from this general relation [23]. Developments efnsemiand nonlinear
viscoelastic models havbeen also done using this general model [23].

© 2017 IAU, Arak Branch
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2.3 Non dimensional nonlinear integwifferential oscillator

Now, we must rewrite Eq5) using the relaxation kernel introduced in EtR). Based on Eq12), the operato©( )
becomes:

o{ft & R() T

- t . (13
R(M :ij(t £) @)d.

Inserting Eq(13) into Eq.(5) and some simple calculations, one can reach such the followindimamsional
integro-differential nonlinear oscillator that demonstrates the behavior of the panel transverse vibration:

a 2 5 2 t * % 0
wm‘%ﬁ%\g 3602 3w® pow ij(t fHywet)dt g F (14)
¢ P - /; G -
where
4 ~
M g w 1_ C_ 4_
=, t W , W —F S —= b——=, F —= 15
(Mi m “rh h Jh h w }mzrzq 19

In these above two equationsgjs the appropriate frequency of the panel oscillatforv, F and 6 are the non
dimensional time of oscillation, the nalimensional deflectionthe nondimensional transverse load and the -non
dimensional bed coefficient respectivedys also introduced as the quasi slenderness ratio. In this research,-the non
dimensional lateral loaH is assumed to be a random white noise excitation with a dbiaq. (16). It demonstrates
a unit white noise excitatiox(t), multiplied by the intensity ok and varied about a mean valkgi.e.

F=F, kx(t) (16)

2.4 The state space formulation

In what follows and in order to better rétsimvestigation, a state space formulation is made. To construct any type
of simulation and numerical solution; first, the relaxation opefatior Eq. (14) should be specified. With reference

to many works irthe literature (see for example [18, 22, 23], tgonential form is selected for the relaxation
operator, i.e.

R=xWe*t 1) (17)
Now, the state space variables are defined as:

t . N
X =W X, Wi X Fj xvex® ) w ) dt (18)

and finally the state space formulation becomes:

& 96s> 0 368
X4 =X, Xy i= g _[;6_ g1 —ﬁﬂﬁ 3G- b(xr X9 R k) +x ix ¥ X (19)
(; -
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3 METHOD OF SOLUTION
3.1 Probability andjoint probability densityfunctions

Since all the statistical parameters of a random variable can be achieved from the probability density function [11,
25], it plays an essentiaole in studying the behavior of randomly excited systems. Simp¥ybé a continuous
random variable, the corresponding probability density functioiX & a functionf (X) such that for any two
numbers a and b with a O b [26],

P(at X ¢ r—':lif(X)dx (20)

In other words, it is the probability thattakes on a value in the interval [a, b]. The grapHh €f) is often
referred to as the density curve. Now, thepected value and other statistical moments can be obtained using this
probability density function as [26]:

E{X}= 'r"j Xf(X)dx meanvalue

b . (21)
E{X”} = r’j X"f(X)dx d" order momer

The probability density function for any general random varixblaust satisfy the following conditns [26]:
P20
ﬁDP(X)dle (22)

E:o,P(x) -0 when X - ©
X

The local peaks of the probability density play the essential role in studying the behavior of the panel. They
demonstrate the number of presence of a random variable in a specific location for an astsuazdf time. In
other words it lets somebody see and track the stable and unstable equilibrium and stationary points of a system.
Bigger and sharper peak values mean more accumulated stable points in the probability density curve.

For more than oneandom variable, the joint probability density function must be computed and investigated.
Simply, a generalization is made and a probability density surface is drawn and studied instead.

3.2 Themontecarlo simulation

Monte Carlo simulation is an effint technique in quantitative analysis and decision makingarries out a
probability distribution for any factor that has inherent uncertainty. After that, it calculates results over and over,
each time using a different set of random values from thbgbility functions. Depending upon the number of
uncertainties and their ranges, it may occupy several recalculations before stopping. Finally it produces the
distributions of possible outcome values.

The state space representation of a general nonkteehrastic differential equation has such the following form
[27, 28]:

dX, =f (X, tdt (X, 1)dB (23

wheref | R", s is a propereal matrix andB, is anm-dimensional Wiener process. The first term in the rigimd
side provides the deternigtic drift while the second is the random noise or diffusion. EhderMaruyama
discretization [28] is now employed to reach Eq. (24):

Xpa =Xp #(Xp,n O tDsE,,n tNDtZ, (29)
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whereZ, is the independent zero mean initial normal distribution. The equistibaing solved and simulated for
several initial conditions and many trajectories have been obtained. The outcome distribution is calculated and the
simulation will be repeated again and again such that a stable outcome probability density will elachiev

4 RESULTS AND DISCUSSION

In this section, applying the Monte Carlo simulation to @), the transient joint probability density function of
the panel is obtained and discussed. Since other statistical properties can be extracted from flity plerisity
function, the transient vibration behavior relates completely to this function.

The parameters of E¢19) are all nordimensional; therefore, the results obtained from this equation can be
applied to a wide range of panels. In our simulatitthe parameters of the viscous medium bex and Vare
assumed to be constant due to their small variatiims.intensity of the white noise excitatidnis alsoconsidered
to be fixed in all simulations. In Table the values of these parametgr®ur simulations are specified.

In actual and practical situations, most of the changes and variations are related to the value of the quasi
slenderness ratig and the nofdimensional mean value of lateral load. The former may vary due to any changes i
the geometry of the panel while the latter fluctuate with respect to the mean magnitude of external loads. Thus, the
behaviors of panels in our simulations are studied with respect to these twamersional parameters mentioned
above.

We face with twotypes of behaviors in the transient response of our system. Relative to the values of quasi
slenderness ratio and the mean value of lateral load, the deflection may approach to a stable equilibrium point or
bifurcate to two stable zones (similar to simpleckling in stability analysis of columns). To study, investigate and
draw the transient vibration, a verification on our simulation must also be done first.

Table 1
The values of parameter used in our simulations

k b v X
1 0.001 0.4 0.3

4.1 Validaton of thesimulation

As indicated previously, the steady state sdymiamic stability of a shallow shell with the same conditions was
studied in [17] recently. In what follows, to validate our simulation, a comparison is made between the steady state
respnse of the shell studied in [17] and that is investigated in present article. Once the validation is satisfied, the
simulation can be used for the transient analysis also.

Fig. 2 lets somebody see the stable, unstable and the border curve of instdtiilityespect tos (quasi
slenderness ratio) arfeh (mean value of lateral load). The figure was obtained via the exact stationary solution of
the Fokker Planck Kolmogorov equation when the inertial force was neglected [17]. See [17] for more details,
assumptions and the method. Based on this figure, everybody can realize the stability of response once the
parameters andFy were specified. Of course, there are two differences between our investigations and those were
done in [17]. First, the investigation [17] is stationary while it is transient in this work. To make a proper analogy,
it is sufficient to compare the transient response for largely enough iterations with previously obtained steady state
solution. Second, the inertial force was neglectedlif] while it contributes in the response in present article.
Although, the inertial force can influence on the probability density function; but, cannot change the location of the
equilibrium points. This islue tothe equilibrium pointsomputed ven all the dynamic forces vanish. If the peaks
loci of the probability density function which relate to the equilibrium points, are the same for both methods, it
means that both of them predict same behavior for the system and consequently, the tiddéeis. va

Fig. 3 illustrates some comparisons between the probability density functions of the response obtained from our
numerical simulation and the exact method presented in [17]. Two stable dissipative vibrations and one unstable
jumping phenomenon adrawn and compared. As shown in the figure, the peak locations are completely the same
for both methods; whereas, some differences in magnitude due to neglecting the inertial force in [17] are also seen.

© 2017 IAU, Arak Branch
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4.2 Transienprobability densityfunctions of theylindrical panel

Using the Monte Carlo simulation (see Sec. 3.2), the transient behavior of the panel with respect to two parameters
(quasi slenderness ratio) aRgl(mean value of lateral load) is studied in this section. Fig. 4 shows the time variatio

of the probability density of the nesimensional deflection whes=5 andF, =5. As this figure displays, with the
proper passage of the ndimensional time, the transient PDF of the aimensional deflection approaches to the
steady status. Figs. mih6 demonstrate same investigations with other valussoéFo. The results presented in

these figures are obtained for a series of initial panel conditions. In other words, The PDFs for several initial
conditions are obtained, superimposed and nomealin order to reach more accurate results.

A simple analogy indicates that for small enough quasi slenderness ratios, a stable behavior (the one peak PDF)
is seen while the jumping and instability (the two peaks PDF) is unavoidable for larger valbispaframeter.
Besides, the location of the dominant peak of PDF relates to the sign of the mean value of latEsaPlositiveF,
results in positive deflection and vice versa. Besides, it is noted that the instability may begin earlier for sesall valu
of lateral load mean.

Fig.2
The stable (light) and unstable (dark) areas from Ref. [17]

a:s=5Fy=-5 b:s=5Fy=5

c:s=20,Fp=2
Fig.3
The comparison between the steady state probability density functions défteetion obtained in this work and that we
previously evaluated in [17].
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