- Birla, A., B. Singh, S.N. Upadhay, and Y.C. Sharma. 2012. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresource Technology. 106: 95-100.
- Borugadda, V.B., and V.V. Goud. 2014. Thermal, oxidative and low temperature properties of methyl esters prepared from oils of different fatty acids composition: A comparative study. Thermo Chimica Acta. 577: 33- 40.
- Buasri, A., N. Chaiyut, and V. Loryuenyong. 2012. Transesterification of waste frying oil for synthesizing biodiesel by KOH supported on coconut shell activated carbon in packed bed reactor. Science Asia. 38: 283-288.
- Campanella A, C. Fontanini, and M.A. Baltanas. 2015. High yield incorporate with humic acid and water deficit generated in castor. Chemistry engineering Journal. 170: 280-289.
- Dazy, M., J. Ferard, and J. Masfaraud. 2008. Ecological recovery of vegetation on a coke-factory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere. 74: 57-63.
- Endalew, E.K., Y. Kiros, and R. Zanzi. 2011. Heteregenous catalysis for biodiesel production from Jatropha curcas oil. Energy. 36(5): 2693-2700.
- Halek, F., A. Delavari, and A. Kavousi-rahim. 2013. Production of biodiesel as a renewable energy source from castor oil. Clean Technology Environment. 15: 1063-1068.
- Hayyan, A., M.A. Hashim, M.E. Mirghani, M. Hayyan, and I.M.A. Nashef. 2013. Esterification of sludge palm oil using trifluoromethane sulfonic acid for preparation of biodiesel fuel. Korean Journal Chemistry Engineering. 30(6): 1229-1234.
- Hincapie, C.S.G., F. Mondragon, and D. Lopez. 2011. Conventional in situ transesterification of castor seed oil for biodiesel production. Fuel. 90: 1618-1623.
- Hoekman, S.K., A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan. 2012. Review of biodiesel composition, properties, and specifications. Renew Sustainable Energy Revolution. 16: 143-169.
- Jumat, S., S. Nadia, and E. Yousif. 2012. Synthesis and characterization of esters derived from ricinoleic acid and evaluation of their low temperature property. Sains Malaysiana. 41: 1239-1244.
- Kamalakar, K., A.K. Rajak, R.B.N. Prasad, and M.S.L. Karuna. 2013. Rubber seed oil based biolubricant basestocks: A potential source for hydraulic oils. Industrial Crops Production. 51: 249-257.
- Kemthong, P., C. Luadthong, and W. Nualpaeng. 2012. Industrial eggshell waste as the heteregenous catalyst for microwave-assisted biodiesel production. Catalyst Today. 190: 112-116.
- Kulkarni, V.V., K. Sivakumar, A.P. Singh, and P. Visha. 2014. Yield and quality characteristics of rendered chicken oil for biodiesel production. Journal Oil Chemistry Sociality. 91: 133- 141.
- Lee, D.H., and Y.S. Kim. 2001. The inductive response of the antioxidant enzymes by water deficit stress and selenium in C4 plants. Plant Physiol. 770: 151-174.
- Mgunis, L.L., R. Meijboom, and K. Jalama. 2012. Biodiesel production over nano-MgO supported on titania. World of Academy of Science Engineering and Technology. 64: 894- 898.
- Nurdin, S., F.A. Misebah, S.F. Haron, N.S. Ghazali, and J. Gimbun. 2014. A cost effective catalyst for biodiesel synthesis from Rubber and Jatropha curcas seeds oil. Chemical Engineering and Applications. 5(6):483-488.
- Okullo, A., A.K. Temu, P. Ogwok, and N. Talikwa. 2012. Physico-chemical properties of biodiesel from Jatropha and Castor oil. Renewable Energy Research. 2: 47-52.
- Paglia, D.E., and W.N. Valentine. 1987. Studies on quantitative and qualitative traits of glutathione peroxidase. Journal Lab Medical. 70: 158-165.
- Pullen, J., and K. Saeed. 2012. An overview of biodiesel oxidation stability. Renew Sustainable Energy. 16: 5924-5950.
- Rengasami, M., S. Mohanraj, S.H. Vardhan, and V. Pugalenthi. 2014. Trans esterification of castor oil using nano-sized iron catalyst for the production of biodiesel. Chemical and Pharmaceutical Sciences. 2: 108-112.
- Salimon, J., N. Salih, and E. Yousif. 2012. Biolubricant basestocks from chemically modified ricinoleic acid. Journal of King Saudi University. 24: 11-17.
- Semwal, S., A.K. Arora, R.P. Badoni, and D.K. Tuli. 2011. Biodiesel production using heteregenous catalyst. Bio resource Technology. 102(3): 2151-2161.
- Shah, B., S. Sulaimana, P. Jamal, and M.S. Alam. 2014. Production of heteregenous catalysts for biodiesel synthesis. Chemistry and Environment Engineering. 5(2): 73-75.
- Siddharth, J., and M.P. Sharma. 2010. Review of different test methods for the evaluation of stability of biodiesel. Renew Sustainble Energy Revolution. 14: 1937-1947.
- Sun, Y., P. Dailey, and S. Deng. 2013. Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as cosolvent: A response surface methodology approach. Fuel. 107: 633-640.
- Tabrizi, A.A., G. Nour Mohammadi, and H.R. Mobasser. 2015. Effects of different cropping systems on fertility of paddy soil. Journal of Crop Ecophysiology. 9(2): 191-202. (In Persian).
- Tsanaktsidis, C.G., S.G. Christidis, and E.P. Favvas. 2013. A novel method for improving the physicochemical properties of diesel and jet fuel using polyaspartate polymer additives. Fuel. 104: 155-162.
- Tseng, J.M., and C.P. Lin. 2012. Prediction of incompatible reaction of dibenzoyl peroxide by isothermal calorimetry analysis and green thermal analysis technology. Thermal Anal Calorimetric. 107: 927-933.
- Wang, J., L. Cao, and S. Han. 2014. Effect of polymeric cold flow improvers on flow properties of biodiesel from waste cooking oil. Fuel. 117: 876-881.
- Zhang, J., and Q. Meng. 2014. Preparation of KOH/CaO/C supported biodiesel catalyst and application process. World Journal of Engineering and Technology. 2: 184-191.
|