Reflection and Transmission of Plane Waves at Micropolar Piezothermoelastic Solids

R. Kumar 1, M. Kaur 2,*

1Department of Mathematics, Kurukshetra University, Kurukshetra 136119, India
2Department of Mathematics, Sri Guru Teg Bahadur Khalsa College, Anandpur Sahib, Punjab 140118, India

Received 5 June 2017; accepted 3 August 2017

ABSTRACT
The present investigation analysis a problem of reflection and transmission at an interface of two micropolar orthotropic piezothermoelastic media. The basic equations and constitutive relations for micropolar orthotropic piezothermoelastic media for G-L theory are derived. The expressions for amplitude ratios corresponding to reflected and transmitted waves are derived analytically. The effect of angle of incidence, frequency, micropolarity, thermopiezoelectric interactions on the reflected and transmitted waves are studied numerically for a specific model. Some special cases of interest one are also deduced.

© 2017 IAU, Arak Branch. All rights reserved.

Keywords: Orthotropic; Micropolar; Piezothermoelastic; Amplitude ratios; Angle of incidence.

1 INTRODUCTION

MICROPOLAR elasticity theory which takes into consideration the granular character of the medium, describes deformation by a microrotation and a microdisplacement. Eringen first showed that the classical elasticity theory [4] and the coupled stress theory [1] are two special cases of micropolar elasticity. The linear theory of micropolar thermoelasticity was developed by extending the theory of micropolar continua to include thermal effects by Nowacki [29] and Eringen [2]. A comprehensive review on the micropolar theromoelasticity is given by Eringen [3]. In most of the engineering problems, including the response of soils, geological materials and composites, some significant features of the continuum response may not take into account by the assumptions of isotropic behavior. The formulation and solution of anisotropic problems is far more difficult and cumbersome than their isotropic counterparts. Number of researchers paid attention to the elastodynamic response of an anisotropic continuum in the last few years. In particular, transversely isotropic and orthotropic materials which may not be distinguished from each other in plane strain and plane stress cases, have been more regularly studied. The static problems of plane micropolar strain of a homogeneous and orthotropic elastic solid, torsion problems of homogeneous and orthotropic cylinders in the linear theory of micropolar elasticity and bending of orthotropic micropolar elastic beams by terminals couple were studied by Iesan [11-12-13]. Finite element method for orthotropic micropolar elasticity was developed by Nakamura et al. [28]. Kumar & Choudhary [23-24-25] and [26-27] have studied various problems in orthotropic micropolar continua.

Piezoelectric ceramics and composites find applications in many engineering applications e.g. sensors, actuators, intelligent structures, rocket propelled grenades, ultrasonic imaging, when thermal effects are not considered.

*Corresponding author.
E-mail address: mandeep1125@yahoo.com (M.Kaur).

© 2017 IAU, Arak Branch. All rights reserved.
Piezoelectric ceramics and piezoelectric polymers are pyroelectric media, which are used in small structure and intelligent system. The thermo-piezoelectric material response entails an interaction of three major fields, namely, mechanical, thermal and electric in the macro-physical world. The thermopiezoelectric material has one important application to detect the responses of a structure by measurement of the electric charge, sensing or to reduce excessive responses by applying additional electric forces or thermal forces, actuating. Intelligent structure can be designed by integrating sensing and actuating. The thermopiezoelectric materials are also often used as resonators whose frequencies need to be precisely controlled. It is important to quantify the effect of heat dissipation on the propagation of wave at low and high frequencies, due to the coupling between the thermoelastic and pyroelectric effects. The theory of thermo-piezoelectricity was first developed by Mindlin [22]. The physical laws for the thermo-piezoelectric materials have been explored by Nowacki [30-31-32]. Chandrasekharaiiah [14-15] has generalized Mindlin’s theory of thermo-piezoelectricity to account for the finite speed of propagation of thermal disturbances. Chen [34] derived the general solution for transversely isotropic piezothermoelastic media. Hou et al.[21] constructed Green’s function for a point heat source on the surface of a semi-infinite transversely isotropic pyroelectric media. Abd-Alla et al. [8] investigated reflection and refraction of plane quasilongitudinal waves at an interface of two piezoelectric media under initial stresses. Pang et al. [36] discussed the reflection and refraction of plane waves at the interface between two transversely isotropic piezoelectric and piezomagnetic media. Different researchers have studied the problems of reflection in piezoelectric media notable among them are Sharma et al. [18], Abdalla and Alshaikh [8-9], Kuang and Yuan[37], Abdalla et al. [10], Alshaikh [16-17], Abd-Alla, Hamdan, Giorgio and Vescovo [6], Guo and Wei [35], Othman [19], Othman, Atwa, Hasona and Ahmed [20], Abd-Alla, Giorgio, Galantucci, Hamdan and Vescovo [7].

In the present paper, the reflection and transmission phenomenon of plane waves at an interface of two orthotropic micropolar piezothermoelastic media has been discussed. It is found that there exist five plane waves in micropolar orthotropic piezothermoelastic medium namely quasi longitudinal displacement wave, quasi thermal wave, quasi coupled transverse displacement and quasi microrotational waves and one wave mode corresponding to electric potential wave. When a plane quasi wave is incident at an interface, the amplitude ratios of various reflected and transmitted waves are computed numerically and are plotted graphically with angle of incidence.

2 BASIC EQUATIONS

Following Green-Lindsay [5], the basic equations of homogeneous orthotropic micropolar piezothermoelastic solid with two relaxation times in the absence of body forces, body couples, electric charge density and heat sources are given by

(a) Constitutive relations

\[t_{kl} = C_{ijkl} e_{kl} + A_{ijkl} w_{kl} - g_{ijkl} E_k - \beta_{ij} (T + v\vec{T}), \]

(1)

\[m_{ij} = D_{ijkl} w_{kl} + A_{ijkl} e_{kl} - \varepsilon_{ijkl} E_k, \]

(2)

\[D_i = \varepsilon_{ij} E_j + g_{ijkl} \varepsilon_{jk} + \lambda_i (T + v\vec{T}), \]

(3)

\[q_i = -T_{ij} T^j + k_g \varepsilon_{ij}, \]

(4)

The deformation and wryness tensor are defined as following:

\[\varepsilon_{ij} = u_{i,j} + \varepsilon_{ik} w_k, \quad w_{ij} = w_{i,j}, \]

(5)

(b) Balance laws

\[t_{kl,h} = \rho \ddot{u}_l, \]

(6)

\[m_{kl,h} + \varepsilon_{im} t_{mn} = \rho \ddot{h}_l, \]

(7)
\[D_{ij} = 0, \quad q_{ij} = -T_{ij} S, \] (8)

where \(S = b_i e_i + \beta_e e_y + \lambda_i E_i + \rho \beta' (T + vT) \)

where \(t_{ij}, m_{ij} \) are the stress tensor, couple stress tensor; \(D_{ij} \) is the electric displacement vector, \(E_{ij} \) is the electric field vector, \(q_{ij} \) is the heat flux vector; \(S \) is the entropy; \(T \) is the thermodynamic temperature; \(T_0 \) is the absolute temperature; \(\beta' \) is the specific heat at constant strain; \(v \) and \(\nu \) are thermal relaxation times; \(\rho \) is the bulk mass density; \(J \) is the microrotina; \(u_{ij} \) and \(w_{ij} \) are the components of displacement vector and microrotation vector, respectively; \(\varepsilon_{ij} \) is dielectric moduli; \(\lambda_i \) is pyroelectric moduli; \(k_{ij} \) is thermal conductivity tensor; \(b_i \) are the coefficients characterizing the lack of a centre of symmetry, \(\varepsilon_{ij} \) are the components of micro-strain tensor, \(\varepsilon_{ij} \) is the permutation tensor, \(\beta_{kl} \) is the thermal elastic coupling tensor; \(C_{ijkl}, G_{ijkl}, D_{ijkl} \) are the characteristic constants of material; \(g_{ik} \) is the electro-elastic coupling moduli where \(C_{ijkl}, D_{ijkl}, g_{ik} \) satisfy the symmetric relations

\[C_{ijkl} = C_{klji}, \quad D_{ijkl} = D_{klji}, \quad g_{ik} = g_{ki}. \] (9)

In a centro-symmetric bodies, all components of \(A_{ijkl} \) vanish.

3 FORMULATION OF THE PROBLEM

By using the transformations following Slaughter [33] on the set of Eqs. (1) to (9), the equations for micropolar orthotropic piezothermoelastic medium are derived.

We consider an interface of two homogeneous centro-symmetric, orthotropic micropolar piezothermoelastic media initially in an undeformed state and at uniform temperature \(T_0 \), namely medium \(M_1 \) and medium \(M_2 \). We take the origin of coordinate system on the plane interface and \(x_3 - \) axis pointing vertically into the medium \(M_1 \) is taken which is designated as \(x_3 \geq 0 \). Plane waves are considered such that all the particles on a line parallel to \(x_2 - \) axis are equally displaced, so that all the partial derivatives with respect to the variable \(x_2 \) will be zero.

Therefore, we take \(\bar{\mathbf{u}} = (u_1, 0, u_3, 0), \bar{\mathbf{w}} = (0, w_2, 0), \bar{\mathbf{E}} = (E_1, 0, E_3), E_i = -\frac{\partial \phi}{\partial x_i}, \phi \) is the electric potential and \(\frac{\partial}{\partial x_2} = 0 \), so that the field equations and constitutive relations reduce to the following:

\[C_{11} \frac{\partial^2 u_1}{\partial x_1^2} + C_{12} \frac{\partial^2 u_1}{\partial x_2^2} + (C_{12} + C_{13}) \frac{\partial^2 u_1}{\partial x_3^2} + (C_{13} - C_{33}) \frac{\partial^2 w_2}{\partial x_2^2} + g_{13} \frac{\partial^2 \phi}{\partial x_2 \partial x_3} + g_{11} \frac{\partial^2 \phi}{\partial x_3^2} - \beta_i \frac{\partial}{\partial x_1} (T + vT) = \rho \frac{\partial^2 u_1}{\partial t^2}, \]

\[C_{33} \frac{\partial^2 u_3}{\partial x_1^2} + C_{13} \frac{\partial^2 u_3}{\partial x_2^2} + (C_{13} + C_{33}) \frac{\partial^2 u_3}{\partial x_3^2} + (C_{33} - C_{13}) \frac{\partial^2 w_2}{\partial x_1^2} + g_{33} \frac{\partial^2 \phi}{\partial x_1 \partial x_3} + g_{31} \frac{\partial^2 \phi}{\partial x_2 \partial x_3} - \beta_i \frac{\partial}{\partial x_3} (T + vT) = \rho \frac{\partial^2 u_3}{\partial t^2}, \]

\[D_{24} \frac{\partial^2 w_2}{\partial x_1^2} + D_{26} \frac{\partial^2 w_2}{\partial x_2^2} + (C_{23} - C_{33}) \frac{\partial^2 u_1}{\partial x_2^2} + (C_{13} - C_{33}) \frac{\partial^2 u_3}{\partial x_1 \partial x_3} + (C_{33} - C_{33} - 2C_{23}) \frac{\partial^2 w_2}{\partial x_2 \partial x_3} + (g_{31} - g_{33}) \frac{\partial^2 \phi}{\partial x_2 \partial x_3} - \beta_i \frac{\partial}{\partial x_3} (T + vT) = \rho J \frac{\partial^2 w_2}{\partial t^2}, \]

\[-\varepsilon_{11} \frac{\partial^2 \phi}{\partial x_1^2} - \varepsilon_{33} \frac{\partial^2 \phi}{\partial x_3^2} + (g_{11} + g_{13}) \frac{\partial^2 u_1}{\partial x_1 \partial x_3} + g_{31} \frac{\partial^2 u_3}{\partial x_1 \partial x_3} + g_{93} \frac{\partial^2 \phi}{\partial x_1 \partial x_3} + \lambda_i \frac{\partial}{\partial x_3} (T + vT) = 0, \]
\begin{align*}
\frac{k_1}{c_1} \frac{\partial^2 T}{\partial x^2_1} + k_3 \frac{\partial^2 T}{\partial x^2_3} - T_0 \frac{\partial}{\partial t} \left(\beta_1 \frac{\partial u_1}{\partial x_1} + \beta_3 \frac{\partial u_3}{\partial x_3} \right) - T_0 \frac{\partial}{\partial x_3} \left(\frac{\partial \phi}{\partial x_3} \right) &= \rho \left(\alpha \frac{\partial}{\partial t} (T + \nu T) \right), \\
\frac{\partial u_{1,t}}{\partial x_1} + \frac{\partial u_{3,t}}{\partial x_3} - g \frac{\partial \phi}{\partial x_3} - \beta (T + \nu T), \\
\frac{\partial u_{3,t}}{\partial x_3} + C_{77} \frac{\partial u_3}{\partial x_3} - g \frac{\partial \phi}{\partial x_1}, \\
m_{32} = D \frac{\partial w_2}{\partial x_3},
\end{align*}
(15)
(16)
(17)
(18)

where \(\beta_1 = C_{11} \alpha_1 + C_{12} \alpha_2, \ \beta_3 = C_{99} \alpha_1 + C_{93} \alpha_2, \ \alpha_1, \ \alpha_2 \) are the coefficients of linear thermal expansion. We have used the notations \(11 \rightarrow 1, 12 \rightarrow 2, 13 \rightarrow 3, 21 \rightarrow 4, 22 \rightarrow 5, 23 \rightarrow 6, 31 \rightarrow 7, 32 \rightarrow 8, 33 \rightarrow 9 \) for the material constants.

For convenience we introduce the following dimensionless quantities:
\[
\begin{align*}
&x_1 = \frac{\omega x_1}{c_1}, \quad x_3 = \frac{\omega x_3}{c_1}, \quad u_1 = \frac{\omega u_1}{c_1}, \quad u_3 = \frac{\omega u_3}{c_1}, \quad w_2 = \frac{C_{11} w_2}{C_{33}}, \quad t_y = \frac{1}{C_{11}} t_y, \quad m_y = \frac{c_1}{\omega D_2} m_y, \\
&T = \frac{T}{T_0}, \quad \phi = \frac{\omega e_{11}}{c_1 g_{13}} \phi, \quad D_j = \frac{1}{g_{13}} D_j, \quad i' = \omega t, \quad v' = \omega v, \quad v_1 = \omega v_1, \quad c_i^2 = \frac{C_{11}}{\rho}, \quad \omega^2 = \frac{C_{33}}{\rho J},
\end{align*}
\]
(19)

where \(\omega^2 \) is the characteristic frequency of the material and \(c_1 \) is the longitudinal wave velocity of the medium. By using the dimensionless quantities in Eqs. (11)-(15), we obtain the following equations
\[
\begin{align*}
&\frac{\partial^2 u_{1,t}}{\partial x_1^2} + a_1 \frac{\partial^2 u_1}{\partial x_1^2} + a_2 \frac{\partial^2 u_3}{\partial x_3^2} + a_3 \frac{\partial^2 u_3}{\partial x_1^2} + a_4 \frac{\partial^2 \phi}{\partial x_1^2} - a_6 \frac{\partial}{\partial t} (T + \nu T) = a_6 \frac{\partial^2 u_1}{\partial t^2}, \\
&\frac{\partial^2 u_{3,t}}{\partial x_3^2} + a_2 \frac{\partial^2 u_1}{\partial x_1^2} + a_4 \frac{\partial^2 u_1}{\partial x_1^2} + a_5 \frac{\partial^2 w_2}{\partial x_1^2} + a_6 \frac{\partial^2 \phi}{\partial x_1^2} + a_9 \frac{\partial^2 \phi}{\partial x_3^2} - a_{12} \frac{\partial}{\partial x_3} (T + \nu T) = a_{12} \frac{\partial^2 u_3}{\partial t^2}, \\
&\frac{\partial^2 w_{2,t}}{\partial x_3^2} + a_4 \frac{\partial^2 w_2}{\partial x_3^2} + a_3 \frac{\partial^2 u_1}{\partial x_1^2} + a_6 \frac{\partial u_3}{\partial x_1} + a_7 w_2 + a_8 \frac{\partial \phi}{\partial x_1} = a_9 \frac{\partial^2 w_2}{\partial t^2}, \\
&\frac{\partial^2 \phi}{\partial x_1^2} + a_{19} \frac{\partial^2 \phi}{\partial x_3^2} - a_{22} \frac{\partial^2 u_1}{\partial x_1^2} - a_{22} \frac{\partial^2 u_3}{\partial x_3^2} + a_{24} \frac{\partial}{\partial x_3} (T + \nu T) = 0, \\
&(\frac{\partial^2 T}{\partial x_1^2} + a_{24} \frac{\partial^2 T}{\partial x_3^2} - \frac{\partial}{\partial t} (a_{22} \frac{\partial u_1}{\partial x_1} + a_{26} \frac{\partial u_3}{\partial x_3}) - \frac{\partial}{\partial x_3} (a_{27} \frac{\partial \phi}{\partial x_3}) - a_{28} \frac{\partial}{\partial t} (T + \nu T),
\end{align*}
\]
(20)
(21)
(22)
(23)
(24)

where
4 PLANE WAVE PROPAGATION

We consider harmonic plane wave propagating in the x_1x_2-plane at a given frequency ω as:

$$(u_1, u_2, w, \phi, T) = (\overline{u_1}, \overline{u_2}, \overline{w}, \overline{\phi}, \overline{T}) e^{i(\omega t - kx)},$$

(26)

where $\overline{u_1}, \overline{u_2}, \overline{w}, \overline{\phi}, \overline{T}$ are functions of x_1 only, k is the wave number and $c = \frac{v}{\sin \theta_0}$ where $c = \frac{k}{\omega}$, v is the phase velocity of wave propagating in x_1x_2-plane along a direction making an angle θ_0 with x_1-axis.

Using Eq. (26) in Eqs. (20)-(24), a system of five homogeneous equations is obtained in five unknowns $\overline{u_1}, \overline{u_2}, \overline{w}, \overline{\phi}, \overline{T}$, which for non-trivial solution yield

$$
\begin{align*}
A_1 \frac{d^{10}}{dx_3^{10}} + A_2 \frac{d^8}{dx_3^8} + A_3 \frac{d^6}{dx_3^6} + A_4 \frac{d^4}{dx_3^4} + A_5 \frac{d^2}{dx_3^2} + A_6 &= 0, \\
\end{align*}
$$

(27)

where

$$
\begin{align*}
A_1 &= a_1a_2a_3a_4a_5a_6, \\
A_2 &= a_4a_5a_6a_7a_8, \\
A_3 &= a_2a_3a_4a_5a_6a_7a_8 + a_4a_5a_6a_7a_8a_9 + h_a a_4a_5a_6a_7a_8 + h_b a_4a_5a_6a_7a_8 + h_c a_4a_5a_6a_7a_8, \\
A_4 &= a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8, \\
A_5 &= a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8, \\
A_6 &= a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8 + a_2a_3a_4a_5a_6a_7a_8, \\
\end{align*}
$$

where

$$(a_1, a_2, a_3, a_4, a_5, a_6) = (C_{33}, C_{31}, C_{32}, C_{11}, C_{13}, C_{12}),$$

$$(g_1, g_2, g_3, g_4, g_5, g_6) = (\rho a_1 a_2 a_3 a_4 a_5 a_6, \beta T, a_6, \rho c^2, a_6, \rho c^2).$$

© 2017 IAU, Arak Branch
The roots of the Eq. (27) give the velocities of five plane waves in the decreasing order of the velocities i.e quasi longitudinal displacement wave (quasi LD wave), quasi thermal wave (quasi T wave), quasi CD-I, quasi CD-II wave and electric potential wave (PE wave).

5 REFLECTION AND TRANSMISSION

We consider an interface of two homogeneous orthotropic micropolar piezothermoelastic media in contact with each other. A plane wave quasi LD wave or quasi thermal wave is incident making an angle \(\theta_0 \) with \(x_3 \)-axis at an interface. Each incident wave results in five reflected wave modes in medium \(M_1 \) which is designated as \(x_3 > 0 \) and five transmitted wave modes in medium \(M_2 \) which is designated as \(x_3 < 0 \). In medium \(M_1 \) and medium \(M_2 \), reflected and transmitted waves are represented by quasi LD wave, quasi thermal wave, quasi CD-I wave, quasi CD-II wave and one other mode corresponding to electric potential wave mode i.e. PE wave mode. All the quantities in medium \(M_2 \) are denoted by bar.

The values of displacements, microrotation, electric potential and temperature distribution in medium \(M_1 \) are given by

\[
\begin{align*}
 u_i(x_i) &= (B_1 e^{-\lambda_i x_1} + B_2 e^{-\lambda_i x_2} + B_3 e^{-\lambda_i x_3} + B_4 e^{-\lambda_i x_4} + B_5 e^{-\lambda_i x_5} + B_6 e^{-\lambda_i x_6} + B_7 e^{-\lambda_i x_7} + B_8 e^{-\lambda_i x_8} + B_9 e^{-\lambda_i x_9} + B_{10} e^{-\lambda_i x_{10}}) e^{j \omega x + \phi(x_0)} + e^{j \omega x_{11}}, \\
 u_i(x_i) &= (m_1 B_1 e^{-\lambda_i x_1} + m_2 B_2 e^{-\lambda_i x_2} + m_3 B_3 e^{-\lambda_i x_3} + m_4 B_4 e^{-\lambda_i x_4} + m_5 B_5 e^{-\lambda_i x_5} + m_6 B_6 e^{-\lambda_i x_6} + m_7 B_7 e^{-\lambda_i x_7} + m_8 B_8 e^{-\lambda_i x_8} + m_9 B_9 e^{-\lambda_i x_9} + m_{10} B_{10} e^{-\lambda_i x_{10}}) e^{j \omega x + \phi(x_0)}, \\
 w_i(x_i) &= (n_1 B_1 e^{-\lambda_i x_1} + n_2 B_2 e^{-\lambda_i x_2} + n_3 B_3 e^{-\lambda_i x_3} + n_4 B_4 e^{-\lambda_i x_4} + n_5 B_5 e^{-\lambda_i x_5} + n_6 B_6 e^{-\lambda_i x_6} + n_7 B_7 e^{-\lambda_i x_7} + n_8 B_8 e^{-\lambda_i x_8} + n_9 B_9 e^{-\lambda_i x_9} + n_{10} B_{10} e^{-\lambda_i x_{10}}) e^{j \omega x + \phi(x_0)}, \\
 \phi(x_i) &= (g_1 B_1 e^{-\lambda_i x_1} + g_2 B_2 e^{-\lambda_i x_2} + g_3 B_3 e^{-\lambda_i x_3} + g_4 B_4 e^{-\lambda_i x_4} + g_5 B_5 e^{-\lambda_i x_5} + g_6 B_6 e^{-\lambda_i x_6} + g_7 B_7 e^{-\lambda_i x_7} + g_8 B_8 e^{-\lambda_i x_8} + g_9 B_9 e^{-\lambda_i x_9} + g_{10} B_{10} e^{-\lambda_i x_{10}}) e^{j \omega x + \phi(x_0)}, \\
 T(x_i) &= (l_1 B_1 e^{-\lambda_i x_1} + l_2 B_2 e^{-\lambda_i x_2} + l_3 B_3 e^{-\lambda_i x_3} + l_4 B_4 e^{-\lambda_i x_4} + l_5 B_5 e^{-\lambda_i x_5} + l_6 B_6 e^{-\lambda_i x_6} + l_7 B_7 e^{-\lambda_i x_7} + l_8 B_8 e^{-\lambda_i x_8} + l_9 B_9 e^{-\lambda_i x_9} + l_{10} B_{10} e^{-\lambda_i x_{10}} + e^{j \omega x_{11}},
\end{align*}
\]
and for medium \(M_2 \):

\[
\bar{u}_i(x_i) = (B_1 e^{-\lambda_{i1} x_i} + B_2 e^{-\lambda_{i2} x_i} + B_3 e^{-\lambda_{i3} x_i} + B_4 e^{-\lambda_{i4} x_i} + B_5 e^{-\lambda_{i5} x_i}) e^{i(\omega - k x_i)},
\]

\(i = 1, 2, \ldots, n \) \hspace{2cm} (33)

\[
\bar{u}_3(x_3) = (m_1 B_1 e^{-\lambda_{31} x_3} + m_2 B_2 e^{-\lambda_{32} x_3} + m_3 B_3 e^{-\lambda_{33} x_3} + m_4 B_4 e^{-\lambda_{34} x_3} + m_5 B_5 e^{-\lambda_{35} x_3}) e^{i(\omega - k x_3)},
\]

\(i = 1, 2, \ldots, n \) \hspace{2cm} (34)

\[
\bar{w}_2(x_4) = (n_1 B_1 e^{-\lambda_{41} x_4} + n_2 B_2 e^{-\lambda_{42} x_4} + n_3 B_3 e^{-\lambda_{43} x_4} + n_4 B_4 e^{-\lambda_{44} x_4} + n_5 B_5 e^{-\lambda_{45} x_4}) e^{i(\omega - k x_4)},
\]

\(i = 1, 2, \ldots, n \) \hspace{2cm} (35)

\[
\bar{\phi}(x_4) = (g_1 B_1 e^{-\lambda_{41} x_4} + g_2 B_2 e^{-\lambda_{42} x_4} + g_3 B_3 e^{-\lambda_{43} x_4} + g_4 e^{-\lambda_{44} x_4} + g_5 e^{-\lambda_{45} x_4}) e^{i(\omega - k x_4)},
\]

\(i = 1, 2, \ldots, n \) \hspace{2cm} (36)

\[
\bar{T}(x_5) = (t_1 B_1 e^{-\lambda_{51} x_5} + t_2 B_2 e^{-\lambda_{52} x_5} + t_3 B_3 e^{-\lambda_{53} x_5} + t_4 B_4 e^{-\lambda_{54} x_5} + t_5 B_5 e^{-\lambda_{55} x_5}) e^{i(\omega - k x_5)},
\]

\(i = 1, 2, \ldots, n \) \hspace{2cm} (37)

where \(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \) are the velocities of reflected quasi LD wave, quasi T wave, quasi CD-I wave and PE wave mode respectively in medium \(M_1 \) and \(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \) are the velocities of transmitted quasi LD wave, quasi T wave, quasi CD-I, quasi CD-II wave and PE wave mode respectively in medium \(M_2 \).

and

\[
m_i = \frac{\Delta_i}{\Delta}, \quad n_i = \frac{\Delta_i}{\Delta}, \quad g_i = \frac{\Delta_i}{\Delta}, \quad l_i = \frac{\Delta_i}{\Delta}, \quad i = 1, 2, 3, 4, 5
\]

\[
\Delta = \begin{vmatrix}
 a_{1}, \lambda_{i1}^2 + \delta_{6} & \delta_{6} & a_{11}, \lambda_{i2}^2 + \delta_{8} & \delta_{8} \lambda_{i6} \\
 -a_{1}, tk & a_{14}, \lambda_{i2}^2 + \delta_{10} & \delta_{10} & 0 \\
 -a_{2}, \lambda_{i1}^2 + \delta_{11} & 0 & a_{20}, \lambda_{i3}^2 - k^2 & a_{23}, (1 + i\nu\omega) \lambda_{i} \\
 \delta_{15}, \lambda_{i6} & 0 & \delta_{16}, \lambda_{i6} & a_{24}, \lambda_{i1}^2 + \delta_{17}
\end{vmatrix}
\]

\[
\Delta_1 = \begin{vmatrix}
 \delta_{5}, \lambda_{i7} & \delta_{7} & a_{1}, \lambda_{i2}^2 + \delta_{8} & \delta_{8} \lambda_{i7} \\
 a_{15}, \lambda_{i7} & a_{14}, \lambda_{i2}^2 + \delta_{10} & \delta_{10} & 0 \\
 \delta_{12}, \lambda_{i7} & 0 & a_{20}, \lambda_{i3}^2 - k^2 & a_{23}, (1 + i\nu\omega) \lambda_{i} \\
 \delta_{14} & 0 & \delta_{16}, \lambda_{i7} & a_{24}, \lambda_{i1}^2 + \delta_{17}
\end{vmatrix}
\]

\[
\Delta_2 = \begin{vmatrix}
 \delta_{5}, \lambda_{i7} & a_{1}, \lambda_{i2}^2 + \delta_{8} & a_{11}, \lambda_{i2}^2 + \delta_{8} \lambda_{i7} \\
 a_{15}, \lambda_{i7} & -a_{1}, tk & \delta_{10} & 0 \\
 \delta_{12}, \lambda_{i7} & -a_{2}, \lambda_{i1}^2 + \delta_{11} & a_{20}, \lambda_{i3}^2 - k^2 & a_{23}, (1 + i\nu\omega) \lambda_{i} \\
 \delta_{14} & \delta_{15}, \lambda_{i7} & \delta_{16}, \lambda_{i7} & a_{24}, \lambda_{i1}^2 + \delta_{17}
\end{vmatrix}
\]

\[
\Delta_3 = \begin{vmatrix}
 \delta_{5}, \lambda_{i7} & a_{1}, \lambda_{i2}^2 + \delta_{8} & \delta_{7} & \delta_{8} \lambda_{i7} \\
 a_{15}, \lambda_{i7} & -a_{1}, tk & a_{14}, \lambda_{i2}^2 + \delta_{10} & 0 \\
 \delta_{12}, \lambda_{i7} & -a_{2}, \lambda_{i1}^2 + \delta_{11} & 0 & a_{23}, (1 + i\nu\omega) \lambda_{i} \\
 \delta_{14} & \delta_{15}, \lambda_{i7} & 0 & a_{24}, \lambda_{i1}^2 + \delta_{17}
\end{vmatrix}
\]

\[
\Delta_4 = \begin{vmatrix}
 \delta_{5}, \lambda_{i7} & a_{1}, \lambda_{i2}^2 + \delta_{8} & \delta_{7} & a_{11}, \lambda_{i2}^2 + \delta_{8} \\
 a_{15}, \lambda_{i7} & -a_{1}, tk & a_{14}, \lambda_{i2}^2 + \delta_{10} & \delta_{10} \lambda_{i1} \\
 \delta_{12}, \lambda_{i7} & -a_{2}, \lambda_{i1}^2 + \delta_{11} & 0 & a_{20}, \lambda_{i3}^2 - k^2 \\
 \delta_{14} & \delta_{15}, \lambda_{i7} & 0 & \delta_{16}, \lambda_{i7}
\end{vmatrix}
\]
6 BOUNDARY CONDITIONS

The appropriate boundary conditions at an interface \(x_3 = 0 \) are given by

\[
t_{33} = \bar{t}_{33}, \quad t_{31} = \bar{t}_{31}, \quad m_{32} = \bar{m}_{32}, \quad k_3 \frac{\partial T}{\partial x_3} = \bar{k}_3 \frac{\partial \bar{T}}{\partial x_3}, \quad u_1 = \bar{u}_1, \quad u_3 = \bar{u}_3, \quad w_2 = \bar{w}_2, \quad T = \bar{T}, \quad E_1 = \bar{E}_1, \quad D_3 = \bar{D}_3
\]

(39)

Making use of Eqs. (28) to (37) in boundary conditions given by Eq. (39), we obtain a system of ten homogeneous equations as:

\[
\sum_{j=1}^{15} a_{ij} B_j = 0; \quad (i = 1, 2, \ldots, 10)
\]

(40)

where

\[
a_{i1} = -d_{1k} + d_{2s} \lambda_i m_i + d_{3s} \lambda_i g_i + d_{4s} (1 + i\sigma) l_i, \quad a_{ij} = -d_{1k} + d_{2s} \lambda_i m_i + d_{3s} \lambda_i g_i + d_{4s} (1 + i\sigma) l_i, \\
a_{ik} = \bar{d}_{1k} + (\bar{d}_{2s} m_i - \bar{d}_{3s} g_i) \lambda_i + \bar{d}_{4s} (1 + i\sigma) \bar{l}_i, \\
a_{i2} = a_{i2}, \quad a_{i3} = a_{i3}, \quad a_{i4} = a_{i4}, \quad a_{i5} = a_{i5}, \quad a_{i6} = a_{i6} = 0, \quad a_{i7} = a_{i7} = 0, \\
a_{i8} = a_{i8} = 0, \quad a_{i9} = -a_{i9}, \quad a_{i10} = -d_{i2s} \lambda_i g_i + d_{i4s} (1 + i\sigma), \\
a_{i11} = -d_{i3s} \lambda_i n_i, \quad a_{i12} = d_{i3s} \lambda_i n_i, \quad a_{i13} = d_{i3s} \lambda_i n_i, \\
a_{i14} = -\lambda_i l_i, \quad a_{i15} = -\lambda_i l_i, \quad a_{i16} = -\lambda_i l_i, \quad a_{i17} = -\lambda_i l_i,
\]

(41)

when quasi LD wave is incident: \(B_3 = B_3 = B_3 = B_3 = 0 \). Dividing the set of equations throughout by \(B_1 \), we obtain a system of ten non-homogeneous equations in ten unknowns which can be solved by Cramer’s rule and we have

\[
Z_j = \frac{B_{i10}}{B_1} = \frac{\Gamma_j}{\Gamma}; \quad i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
\]

when quasi T wave is incident: \(B_1 = B_3 = B_4 = B_5 = 0 \). Dividing the set of equations throughout by \(B_2 \), we obtain a
system of ten non-homogeneous equations in ten unknowns which can be solved by Cramer’s rule and we have

\[Z_i = \frac{B_{i+5}}{B_2} = \frac{\Gamma (i)}{\Gamma}, \quad i = 1, 2, \ldots, 10 \]

where \(\Gamma = \left| a_{i+5} \right|_{10 \times 10} \), and \(\Gamma^\rho (i = 1, 2, \ldots, 10)(p = 1, 2, \ldots, 10) \) can be obtained by replacing, respectively the 1\(^{\text{st}}\), 2\(^{\text{nd}}\), \ldots, 10\(^{\text{th}}\) columns of \(\Gamma \) by \([-a_{i\rho}, -a_{2\rho}, a_{3\rho}, a_{4\rho}, \ldots, a_{10\rho}]^T \).

7 PARTICULAR CASES

If we neglect piezoelectric effect in medium \(M_2 \), we obtain amplitude ratios at an interface of orthotropic micropolar piezothermoelastic solid and orthotropic micropolar thermoelastic solid with the values of \(a_{ij} \) as:

\[
\begin{align*}
 a_{ii} &= -d_{ik} \lambda_i m_i + d_{ik} \lambda_i g_i - d_{ik} (1 + \imath \nu) l_i, \\
 a_{ij} &= -d_{ik} \lambda_i + d_{ik} \lambda_i m_i - d_{ik} \lambda_i g_i - d_{ik} (1 + \imath \nu) l_i, \\
 a_{i\epsilon} &= \frac{d_{ik} (1 + \imath \nu) l_i + d_{ik} (1 + \imath \nu) l_i}{\lambda_i} + d_{ik} (1 + \imath \nu) l_i, \\
 a_{i2} &= -a_{i\epsilon} + (d_{ik} g_i - d_{ik} m_i) l_i, \\
 a_{i5} &= a_{i\epsilon} + (d_{ik} g_i - d_{ik} m_i) l_i, \\
 a_{i8} &= d_{ik} \lambda_i + (d_{ik} m_i - d_{ik} g_i) l_i, \\
 a_{i5} &= -\lambda_i l_i, \\
 a_{i4} &= \lambda_i l_i, \\
 a_{i6} &= -m_i, \\
 a_{i7} &= 0, \\
 a_{i8} &= 0, \\
 a_{i9} &= -m_i, \\
 a_{i10} &= -l_1, \\
 a_{i11} &= d_{ik} \lambda_i g_j - \imath k d_{ik} m_i + a_{i2} (1 + \imath \nu), \\
 a_{i12} &= d_{ik} \lambda_i g_j - \imath k d_{ik} m_i + a_{i2} (1 + \imath \nu), \\
 k &= 11, 12, 13, 14
\end{align*}
\]

By neglecting the micropolarity effect in medium \(M_2 \), we obtain amplitude ratios at an interface of orthotropic micropolar piezothermoelastic solid and orthotropic piezothermoelastic solid with the values of \(a_{ij} \) as:

\[
\begin{align*}
 a_{ii} &= -d_{ik} \lambda_i m_i + d_{ik} \lambda_i g_i - d_{ik} (1 + \imath \nu) l_i, \\
 a_{ij} &= -d_{ik} \lambda_i + d_{ik} \lambda_i m_i - d_{ik} \lambda_i g_i - d_{ik} (1 + \imath \nu) l_i, \\
 a_{i\epsilon} &= \frac{d_{ik} (1 + \imath \nu) l_i + d_{ik} (1 + \imath \nu) l_i}{\lambda_i} + d_{ik} (1 + \imath \nu) l_i, \\
 a_{i2} &= -a_{i\epsilon} + (d_{ik} g_i - d_{ik} m_i) l_i, \\
 a_{i5} &= a_{i\epsilon} + (d_{ik} g_i - d_{ik} m_i) l_i, \\
 a_{i8} &= d_{ik} \lambda_i + (d_{ik} m_i - d_{ik} g_i) l_i, \\
 a_{i5} &= -\lambda_i l_i, \\
 a_{i4} &= \lambda_i l_i, \\
 a_{i6} &= -m_i, \\
 a_{i7} &= 0, \\
 a_{i8} &= 0, \\
 a_{i9} &= -m_i, \\
 a_{i10} &= -l_1, \\
 a_{i11} &= d_{ik} \lambda_i g_j - \imath k d_{ik} m_i + a_{i2} (1 + \imath \nu), \\
 a_{i12} &= d_{ik} \lambda_i g_j - \imath k d_{ik} m_i + a_{i2} (1 + \imath \nu), \\
 k &= 11, 12, 13, 14
\end{align*}
\]

If we neglect piezoelectric and micropolarity effects in medium \(M_1 \) and \(M_2 \), our results tally with those obtained for perfect bonding case.
8 NUMERICAL RESULTS AND DISCUSSION

In order to determine the amplitude ratios, the method of crammer’s rule has been used and computer program in Matlab 7.8 has been developed.

The physical data for medium M_1 is given by

$$C_{11} = 7.46 \times 10^6 \text{Nm}^{-2}, \quad C_{12} = 3.9 \times 10^6 \text{Nm}^{-2}, \quad C_{33} = 1.37 \times 10^6 \text{Nm}^{-2}, \quad C_{99} = 8.39 \times 10^6 \text{Nm}^{-2},$$

$$C_{91} = 0.399 \times 10^6 \text{Nm}^{-2}, \quad C_{77} = 0.0138 \times 10^6 \text{Nm}^{-2}, \quad C_{37} = 0.134 \times 10^6 \text{Nm}^{-2}, \quad C_{73} = 1.32 \times 10^6 \text{Nm}^{-2},$$

$$g_{13} = -0.142 \times 10^{-3} \text{cm}^{-2}, \quad g_{71} = -0.165 \times 10^{-3} \text{cm}^{-2}, \quad g_{93} = 0.351 \times 10^{-3} \text{cm}^{-2}, \quad g_{31} = -0.139 \times 10^{-3} \text{cm}^{-2},$$

$$e_{11} = 8.29 \times 10^{-11} \text{Nm}^{-2} / K, \quad e_{33} = 9.07 \times 10^{-11} \text{Nm}^{-2} / K, \quad \lambda_3 = 7.6 \times 10^{-6} \text{cm}^{-2} / K, \quad \nu_1 = 0.8 s,$$

$$k_1 = 9.5 Wm^{-1}K^{-1}, \quad k_3 = 9.7 Wm^{-1}K^{-1}, \quad \beta_1 = 0.670 \times 10^4 \text{C}^2 \text{N}^{-1} \text{m}^{-2}, \quad \beta_3 = 0.581 \times 10^4 \text{C}^2 \text{N}^{-1} \text{m}^{-2},$$

$$\nu = 0.26 s, \quad T_0 = 298 K, \quad \rho = 5504 Kgm^{-3}, \quad c^* = 2.64 \times 10^5 \text{NmKg}^{-1}K^{-1}, \quad J = 0.02 \times 10^{-11} \text{m}^{-2},$$

$$D_{24} = 0.134 N, \quad D_{36} = 0.243 N,$$

and for medium M_2 is given by

$$C_{11} = 0.141 \times 10^6 \text{Nm}^{-2}, \quad C_{12} = 0.786 \times 10^6 \text{Nm}^{-2}, \quad C_{33} = 26.1 \times 10^6 \text{Nm}^{-2}, \quad C_{99} = 1.81 \times 10^9 \text{Nm}^{-2},$$

$$C_{91} = 75.8 \times 10^6 \text{Nm}^{-2}, \quad C_{77} = 26.9 \times 10^6 \text{Nm}^{-2}, \quad C_{37} = 26.6 \times 10^6 \text{Nm}^{-2}, \quad C_{73} = 26.3 \times 10^6 \text{Nm}^{-2},$$

$$g_{13} = 0.013 \times 10^{-3} \text{cm}^{-2}, \quad g_{71} = -0.061 \times 10^{-3} \text{cm}^{-2}, \quad g_{93} = 0.00157 \times 10^{-3} \text{cm}^{-2}, \quad g_{31} = 1.28 \times 10^{-3} \text{cm}^{-2},$$

$$e_{11} = 5.30 \times 10^{-11} \text{Nm}^{-2} / K, \quad e_{33} = 7.08 \times 10^{-11} \text{Nm}^{-2} / K, \quad \lambda_3 = 8.2 \times 10^{-6} \text{cm}^{-2} / K, \quad \nu_1 = 0.6 s,$$

$$k_1 = 1.1 Wm^{-1}K^{-1}, \quad k_3 = 1.1 Wm^{-1}K^{-1}, \quad \beta_1 = 0.526 \times 10^4 \text{C}^2 \text{N}^{-1} \text{m}^{-2}, \quad \beta_3 = 0.355 \times 10^4 \text{C}^2 \text{N}^{-1} \text{m}^{-2},$$

$$\nu = 0.25 s, \quad T_0 = 330 K, \quad \rho = 7500 Kgm^{-3}, \quad c^* = 350 NmKg^{-1}K^{-1}, \quad J = 2.0 \times 10^{-11} \text{m}^{-2},$$

$$D_{24} = 0.119 N, \quad D_{36} = 0.127 N,$$

Figs. 1-20 show the variations of amplitude ratios with angle of incidence for incidence of plane waves at an interface for GL-theory. In Figs. 1-20 MPT corresponds to amplitude ratios in orthotropic micropolar piezothermoelastic solid, WPE corresponds to amplitude ratios in orthotropic micropolar thermoelastic solid, WMP corresponds to amplitude ratios in orthotropic piezothermoelastic solid.

8.1 Quasi LD wave incidence

Figs. 1-10 represent the variations of amplitude ratios $|Z_i|; 1 \leq i \leq 10$ with angle of incidence θ_0 for incidence of quasi LD wave.

Fig. 1 shows that the values of amplitude ratio $|Z_1|$ for MPT, WMP and WPE increase from normal incidence to grazing incidence. It is noticed that the values of amplitude ratio for WMP are less than the values for WPE. It shows that the micropolarity effect increases the magnitude of amplitude ratio. The values of amplitude ratio $|Z_1|$ for WMP are magnified by multiplying by 10^2.

It is noticed clearly from Fig. 2 that the values of amplitude ratio $|Z_2|$ for WPE start with minimum value at normal incidence and then increase gradually to attain maximum value at the grazing incidence, while the values for WMP decrease with increase in angle of incidence. The values of amplitude ratio for orthotropic piezothermoelastic solid are greater than the values for orthotropic micropolar thermoelastic solid that reveals the micropolarity effect.

From Fig. 3 it is clearly revealed that the values of amplitude ratio $|Z_3|$ for MPT increase in the whole range. It is observed that the values of amplitude ratio for orthotropic micropolar piezothermoelastic solid are greater than the values for orthotropic piezothermoelastic solid and orthotropic micropolar thermoelastic solid.
Fig. 4 depicts the variation of amplitude ratio $|Z_4|$ with angle of incidence. The values of amplitude ratio for MPT and WPE increase, while WMP oscillate with increase in angle of incidence. The values of amplitude ratio for WPE are greater than the values of amplitude ratio for WMP.

Fig. 5 shows that the values of amplitude ratio $|Z_5|$ for MPT, WPE and WMP attain minimum value at normal incidence and then the values increase sharply as θ_0 increases. The values for MPT are greater than the values for WMP and WPE in the whole range.

Fig. 6 shows that the values of amplitude ratio $|Z_6|$ for WPE increase with angle of incidence, while the values for WMP decrease. In this case, the removal of micropolarity effect increases the magnitude of amplitude ratio. Fig. 7 depicts that the values of amplitude ratio $|Z_7|$ for MPT and WMP increase as angle of incidence increases, while the values for WPE decreases.

It is noticed from Fig. 8 that the values of amplitude ratio $|Z_8|$ for MPT, WMP and WPE increase with increase in angle of incidence. The values for WMP are greater than the values for MPT in the whole range.

Fig. 9 reveals that the values of amplitude ratio $|Z_9|$ for WPE attain maximum value at normal incidence and then decrease in the further range and are greater than the values for MPT in the whole range. It is depicted from Fig. 10 that the values of amplitude ratio $|Z_{10}|$ for MPT increase in the whole range. The values for MPT are less than the values for WMP in the whole range.
Fig. 3
Variation of amplitude ratio $|Z_1|$ with angle of incidence.

Fig. 4
Variation of amplitude ratio $|Z_4|$ with angle of incidence.

Fig. 5
Variation of amplitude ratio $|Z_5|$ with angle of incidence.

Fig. 6
Variation of amplitude ratio $|Z_6|$ with angle of incidence.
Fig. 7
Variation of amplitude ratio $|Z_1|$ with angle of incidence.

Fig. 8
Variation of amplitude ratio $|Z_3|$ with angle of incidence.

Fig. 9
Variation of amplitude ratio $|Z_4|$ with angle of incidence.

Fig. 10
Variation of amplitude ratio $|Z_{10}|$ with angle of incidence.
8.2 Quasi T wave incidence

Figs. 11-20 represent the variations of amplitude ratios $|Z_i|; 1 \leq i \leq 10$ with angle of incidence θ_0 for incidence of quasi T wave.

Fig. 11 shows that the values of amplitude ratio $|Z_1|$ for WPE start with maximum value at normal incidence and then the values decrease to attain minimum value at the grazing incidence. It is seen that the values for MPT increase with angle of incidence.

Fig. 12 depicts the variation of amplitude ratio $|Z_2|$ with angle of incidence. The values of amplitude ratio for MPT decrease with angle of incidence to attain minimum value at the grazing incidence. In this case, the removal of piezoelectric effect and the removal of micropolarity effect increases the magnitude of amplitude ratio.

It is noticed from Fig. 13 that the values of amplitude ratio $|Z_3|$ for WPE get increased, while the values for MPT get decreased with angle of incidence. It is seen that absence of micropolarity effect raises the magnitude of amplitude. Fig. 14 shows that the values of amplitude ratio $|Z_4|$ for WPE remain less than the values for MPT and WMP in the whole range.

Fig. 15 depicts that the values of amplitude ratio $|Z_5|$ for MPT decrease in the whole range, except the initial range where the values of amplitude ratio get increased. The values of amplitude ratios for MPT are greater than the values for WMP in the whole range.

Fig. 16 shows that the values of amplitude ratio $|Z_6|$ for MPT, WPE and WMP are very small in magnitude and oscillate from normal incidence to grazing incidence. The absence of micropolarity effect increases the magnitude of amplitude ratio in this case. It is seen from Fig. 17 that the values of amplitude ratio $|Z_7|$ for WPE get increased with increase in θ_0. The values for MPT increase in the whole range, except the initial range, where the values decrease.

It is depicted from Fig. 18 that the values of amplitude ratio $|Z_8|$ for MPT start with minimum value at the normal incidence and then increase to attain maximum value near the grazing incidence. The values for WPE decrease in the whole range. The values of amplitude ratio in the absence of piezoelectric effect are smaller than the values in the presence of piezoelectric effect.

Fig. 19 shows that the values of amplitude ratio $|Z_9|$ for MPT and WPE attain maximum value at the normal incidence and then decrease to attain minimum value at grazing incidence. Fig. 20 depicts that the values of amplitude ratio $|Z_{10}|$ for MPT increase sharply in the initial range and then decrease as long as θ_0 increases. In this case, the micropolarity effect increases the magnitude of amplitude ratio in the whole range.

![Variation of amplitude ratio $|Z_i|$ with angle of incidence.](image_url)
Fig. 12
Variation of amplitude ratio $|Z_2|$ with angle of incidence.

Fig. 13
Variation of amplitude ratio $|Z_3|$ with angle of incidence.

Fig. 14
Variation of amplitude ratio $|Z_4|$ with angle of incidence.

Fig. 15
Variation of amplitude ratio $|Z_5|$ with angle of incidence.
Fig. 16
Variation of amplitude ratio $|Z_4|$ with angle of incidence.

Fig. 17
Variation of amplitude ratio $|Z_4|$ with angle of incidence.

Fig. 18
Variation of amplitude ratio $|Z_4|$ with angle of incidence.

Fig. 19
Variation of amplitude ratio $|Z_4|$ with angle of incidence.
Figs. 21-24 show the variations of wavefronts of displacement, microrotation and temperature with respect to x_1-axis for time instants $t = 1$ and $t = 5$ secs in orthotropic micropolar piezothermoelastic half-space.

Figs. 21 and 23 depict that the amplitude of horizontal displacement u_1 and microrotation w_2 decreases with increase in the value of x_1. The values for $t = 5$ are greater than the values for $t = 1$, which shows that as the time increases the amplitude increases.

Figs. 22 and 24 show the variation of vertical displacement u_3 and temperature T with respect to x_1-axis. It is observed that the values of vertical displacement u_1 and temperature T first decrease and then increase.
9 CONCLUSIONS

The reflection and transmission coefficients of various plane quasi waves on incidence of quasi LD wave and quasi T wave at an interface of two orthotropic micropolar piezothermoelastic media are obtained in the present paper. It is noticed that reflection and transmission coefficients are influenced by piezoelectric and micropolarity effect. It is seen that when quasi LD wave is incident, the values of amplitude ratios of reflected quasi T wave in the absence of micropolarity effect are greater that reveals the effect of micropolarity. When quasi T wave is incident, the piezoelectric effect increases the magnitude of amplitude ratio of reflected quasi CD-II wave and transmitted quasi CD-II wave modes. The problem investigated in this paper has wide applications in signal processing and wireless communication in addition to improvement of SAW wave devices and defence equipment.

REFERENCES

