مطالعه تحلیلی چرخش‌گذگی الاستیک لبه صفحات گرد
در فرآیند کشش عمیق

فرزاد موبدیان ۱، مهران کدخداویان ۲
Kadkhoda@um.ac.ir

چکیده

بر اساس مدل دو بعدی تنش صفحه ای و فاکشنال دو شاخه ای بر اساس توری عمومی یکپارچه دیال مختصات قطبی، شرایط ناحیه چرخش‌گذگی الاستیک لبه ورق گرد (تعداد موج‌های تغییر شکل در لبه ورق و همچنین حدودهای چرخش‌گذگی) طی فرآیند کشش عمیق به طور تحلیلی به منظور بهبود نتایج قابلیت، حضوری این است. در این حل تحلیلی، حد الاستیک بودن ماده علاوه بر شرایط ناحیه محدوده چرخش‌گذگی الاستیک، حفاظ شده و در به دست اوردن فاکشنال دوشاخته ای از توری تغییر شکل کوچک و بزرگ استفاده گردیده و در نهایت به مقایسه این دو توری پرداخته شده است. مزیت قابل توجه نتایج به دست آمده با این روشن نشان بوده‌است که اغلب از روشهای مشابه استفاده نموده اند، به دست اوردن پاسخ صریح و همچنین استفاده از توری تغییر شکل بزرگ در به دست اوردن مقدار بحرانی می‌باشد.

کلیدواژه:
چرخش‌گذگی الاستیک- فاکشنال دو شاخه ای- توری تغییر شکل کوچک- توری تغییر شکل بزرگ- فرآیند کشش عمیق

farzad_moayyedian@yahoo.com

۱- دانشجو دکتری، دانشکده مهندسی مکانیک، دانشگاه فردوسی مشهد
۲- دانشیار، دانشکده مهندسی مکانیک، دانشگاه فردوسی مشهد
در نهایت به مقایسه این دو روش می‌پردازیم. برای این منظور فاکتور (1) به طور دقیق برای دو تئوری به دست آورده شده و با قرار دادن تغییر مکان ها و توسعه نش را در آن به یک فرم ماتریسی می‌رسیم که در نهایت از آن می‌توان تعداد موج بحرانی و محدوده قرار دادن را به دست آورد. در انتهای نیز به مقایسه جریانی اصلاح شده و اصلاح شده شده است. به دست آوردن پاسخ سریع و همچنین استفاده از تئوری تغییر شکل بزرگ از مهندسین دست اوردها این تحقیق می‌باشد.

برای این منظور ابتدا به یک سری تعاریف اولیه نیاز داریم.

۲- تعاریف اولیه

هنگامی که دو سیستم مختصرها را بررسی سطح میانی ورق تغییر شکل نافذته (قبل از ورق جریانی) قرار دهیم، نقاط درون سطح به وضعیت میانی دارد و θ که به روی سطح میانی قرار دارند و مختصات \bar{r}، عمود بر سطح میانی تغییر شکل.

![Blankholder](image1)

![Blankholder](image2)

\[F = \iint (M_{ij} \kappa_{ij} + N_{ij} \bar{w}^0 + N_{ijw} \bar{w}) d\bar{s} , \]

(1)

به بقیه که ۴، نمایانگر ناحیه سطح میانی پوسته که در آن جریان ها باید اتفاق افتاده هستند. \bar{w} ضخامت پوسته، κ_{ij} تغییر مکانی، عمود بر سطح میانی و در جهت \bar{r} می‌باشد، \bar{w} و \bar{n} تغییر مکانی های درون سطح ای در جهت \bar{r} آورده شده که به دست آورده شده گیژنار، κ_{ij} نمایانگر تغییر مکانی (یا تانسور تغییر انحنای)، β_{ij} نتایج کرنش (یا) تانسور کرنش لگاریتمی می‌باشد. این فاکتورال \bar{w} دو شاخصی که ارزوی کل برای نوع جریانی در نمایی می‌باشد. اولین ترم این فاکتورال سیستم ارزوی تغییر شکل است \bar{w} و \bar{n} ارزوی پیچشی است \bar{w}، \bar{n}، در نهایت در این مکان که در جهت \bar{r} می‌باشد، \bar{w} و \bar{n} باید تغییر داشته باشند.

![Die block](image3)

در این صورت جواب‌های تغییر شکل یکتا هستند و دوگانه اوی شدن غیر منظم است. شرط برای بروز جریان ها برای برخی میدان‌های تغییر شکل غیر صفر

\[F = 0 \]

(2)

در این تحقیق به بررسی جریانی اصلی در ابتدا با تئوری تغییر شکل کوچک و سپس با استفاده از تئوری تغییر شکل بزرگ
3- استفاده از تئوری تغییر شکل کوکچ در به دست آوردن فاکتورالیژ این شاخص ای

$E_{ij} = Z K_{ij}$.

(7)

با جایگزینی معادله (7) در معادله (6) و چاگ‌گذاری حاصل این در معادلات (4) برای رابطه و گشتاورها به صورت زیر پدید می‌شود.

$$
\begin{align*}
N_y &= \int \sigma_y dz = \int \mathbf{L}_{ijkl} \kappa_{kl} z dz = 0, \\
M_y &= \int \sigma_y z dz = \int \mathbf{L}_{ijkl} \kappa_{kl} z^2 dz = \frac{1}{12} \int \mathbf{L}_{ijkl} \kappa_{kl}.
\end{align*}
$$

(8)

در این حالات فاکتورالیژ کلی (1) در مختصات قطعی و با شرایط لگر در شکل به صورت زیر تبدیل می‌شود.

$$
F(w) = \frac{1}{2} \int_0^h \left[\frac{1}{12} \int_{\mathbf{L}_{ijkl} \kappa_{kl} \frac{r}{w_{ij}} - \frac{1}{2} \frac{\partial w}{\partial \theta} \right] r dr d\theta
$$

(9)

با توجه به رابطه (6) و با بسط عبارات بالا به ازای $i, j = 1, 2$ و $i, j = 1, 2$ و در معادله (4) در معادله (3) در محاسبه این فاکتورالیژ با سخت وضعیت دیلی می‌آید.

$E_{ij} = Z K_{ij}$.

(2)

به قسمی که W_i, تغییر مکان کمکش، عمود بر صفحه مباین و در جهت Z, می‌باشد. محله های K_{ij} برای صفحه گردد با سرواخ مرکزی و حالات تنش صفحه ای به صورت زیر می‌باشد.

$$
\begin{align*}
K_{ij} &= -\frac{\partial^2 w}{\partial z^2}, \\
K_{ij} &= \frac{1}{r} \frac{\partial w}{\partial r} - \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2}, \\
K_{ij} &= \frac{1}{r} \frac{\partial^2 w}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2}.
\end{align*}
$$

(3)

برای رابطه و گشتاورها نیز در حالات کلی برای صفحه ای به صورت زیر تعریف می‌شود.

$$
\begin{align*}
N_y &= \int \sigma_y dz, \\
M_y &= \int \sigma_y z dz.
\end{align*}
$$

(4)

معادله مشخصه برای جسم الاستیک به صورت زیر است.

$$
\sigma_y = L_{ijkl} \kappa_{kl}.
$$

(5)

به قسمی که $L_{ijkl} \kappa_{kl}$ برای ماده الاستیک ایزوتروپ و در حالات تنش صفحه ای به صورت زیر تعریف می‌شود.
مطالعه تحلیلی چروبندی استاتیک لبه صفحات گرد در فرآیند کنش عمیق

\[G(m,n,\nu) = \frac{m_n^2 + 2m + \ln \left(\frac{1}{m} \right) - \frac{3}{2} m_n^4 + \frac{3}{2} m_n^2 + 2(\ln(m) - m) \nu^2 + 3 \ln \left(\frac{1}{m} \right) }{H(m,n)} \]

\[H(m,n) = \frac{m_n^2 - m_n^4 + \frac{1}{2} m_n^2 + \ln \left(\frac{1}{m} \right) }{1} \]

از شرط بحرانی چروبندگی روابط زیر برای به دست آوردن $F = 0$ و روند زیر برای به دست آوردن بار بحرانی چروبندگی به دست می‌آید.

\[p = \frac{D}{b^2 h} G(m,n,\nu), \]

\[\frac{b^2 h}{D} p > \frac{G(m,n,\nu)}{H(m,n)} \]

به قسمی که c, مقداری تابی می‌باشد. این است که هر مورد $r = a$, قابل قبول، شرایط مزیت 0, در به دست آمده در قیمت w, برای بار به دست آمده $w(r,\theta)$. همچنین قیمت $a \leq r \leq b$ درآورده نمی‌باشد. برای به دست آوردن تعداد صفحات و مانند چروبندگی از طریق به دست آمده در قیمت β در بار به دست آمده α. به نتیجه‌گیری از منبع موازی و روش‌ها استابتی از جمله مدرن و گردش استیک در منابع سیستمیکی که به دست آمده در قیمت p کشیده می‌شود، بازه از واقع چروبندگی (بینی حالتی که مدل تقریب هندسی دارد، $0 = \nu$ و $0 = \nu$). نیاز دارد، که به صورت $0 \leq \beta \leq \theta \leq \pi$.

\[\sigma_r = \frac{c}{b^2 - a}, \]

\[\sigma_\theta = \frac{c}{b^2 - a} \left(\frac{b^2}{r^2} - 1 \right) \]

با جایگذاری معادلات (11) و (12) در چرتکش به دست اورده شده (10) و اندازه‌گیری از آن و قرار دادن c, به سمت بردار

\[\sigma = \frac{2c b^2}{b^2 - a} \left(\frac{b^2}{r^2} - 1 \right) \]

\[F = \frac{\pi c^2 D G(m,n,\nu) + \pi c^2 b^2 p H(m,n)}{2} \]

به قسمی که c, مقداری می‌باشد. به صورت زیر تبیبد

\[F = \frac{\pi c^2 D G(m,n,\nu) + \pi c^2 b^2 p H(m,n)}{2} \]
زمان‌تغییری تغییر شکل بزرگ در به دست آوردن فانکشنال دو شاخه‌ای

\[E_{ij} = E_j^0 + z K_{ij} \]

(21)

با جایگذاری معادله (21) در (25) و قرار دادن نتیجه آن در معادلات (22)، برای نیروها و گشتاورها به صورت زیر به دست می‌آیند.

\[N_{ij} = \begin{cases} +\frac{1}{3} \sigma_{ij} dz = \frac{1}{3} I_{ijkl}^e (E_j^0 + 2z K_{ik}) dz = \frac{1}{12} I_{ijkl}^e K_{ik} \end{cases} \]

(22)

در این حالت فانکشنال کلی (1) در مختصات خطی با شرایط دقت را به صورت زیر تبدیل می‌شود.

\[F(u, v, w) = \frac{1}{2} \int_0^b \left(\frac{\partial u}{\partial t} L_{ijkl}^e + t L_{ijkl}^e E_j^0 + t \sigma_{ij} w w_{ij} \right) \text{nhd} \theta = \]

\[= \frac{1}{2} \int_0^b \int_0^2 L_{ijkl}^e K_{ik} \text{nhd} \theta + \frac{1}{2} \int_0^b \int_0^2 t L_{ijkl}^e E_j^0 \text{nhd} \theta + \]

\[\frac{1}{2} \int_0^b \int_0^2 \sigma_{ij} w w_{ij} \text{nhd} \theta. \]

(23)

با جایگذاری معادله (2) و با استفاده از روابط (3) و (25) فانکشنال (22) به صورت زیر تبدیل می‌شود.

\[F = \frac{\pi^2 D}{2} G(m, n, v) + \frac{\pi E b^3}{2(1-v^2)} \]

\[Q(m, n, v) + R(m, n, v) \text{cde} + S(m, n, v) e^2 \]

(24)

\[\frac{H(m, n)}{2} = \frac{m^2}{2} \left(\frac{1}{m} + 2m + \ln \frac{1}{m} \right) - \frac{3}{2} n^2 + \]

\[(-1 - \psi) m^2 + 2 \ln (m - m - 1) - 3 \psi n^2 + 3 \ln \left(\frac{1}{m} \right), \]

(25)

\[H(m, n) = \frac{m^2}{2} \left(\frac{1}{m} + 2m + \ln \frac{1}{m} \right) - \frac{3}{2} n^2 + \]

\[\ln \left(\frac{1}{m} \right) + 1) n^2 + 2 \ln (m - m - 1) - 2 \psi n^2 + 3 \ln \left(\frac{1}{m} \right). \]

(26)

با توجه به رابطه (6) و با استفاده از روابط (3) و (25) فانکشنال (26) به صورت زیر تبدیل می‌شود.

\[F = \frac{1}{2} \left[\frac{1}{2} \int_0^b \int_0^2 \left(\frac{\partial u}{\partial \psi} - \frac{\partial u}{\partial \theta} \right) \right] \text{nhd} \theta + \frac{1}{2} \int_0^b \int_0^2 t \left(\frac{\partial \psi}{\partial \psi} - \frac{\partial \psi}{\partial \theta} \right) \text{nhd} \theta + \]

\[+ \frac{1}{2} \int_0^b \int_0^2 \sigma_{ij} w w_{ij} \text{nhd} \theta. \]

(27)
پنجم-

مفهوم تناوبی

همانطور که مشاهده می‌شود بسیاری از جایگاه‌های تغییر ممکن هست و توزیع
نتیجه‌گیری در فاصله آزادی به دست آمده به دست آمده به دست آمده به دست آمده با استفاده از دو تغییر
رنگ از این لایه می‌تواند باشد تغییر شکل کوچک و بزرگ با تغییر پیکان رشد. حال بسیار
نوردهی به دست آمده شده و بررسی نتایج آن در پرداخت

عنوان مورد نظر 1 6 مایه در حالت دوم به روش

در تغییر شکل کوچک (18-60) می‌باشد.

چهارم-

نتیجه‌گیری

در شرایط خاصی در فاصله‌ای کشش عمیق، امکان داری بود که تغییر است. این روش

به دست آمده را پایه برای دست آمده مقدس کننده پذیرانه و دقیق

در دوره آمده از این لایه می‌تواند باشد. حال بسیار

c

روش

\[
F = \begin{bmatrix}
M_{11} & 0 & 0 & 0 \\
0 & M_{22} & M_{23} & 0 \\
0 & M_{32} & M_{33} & 0 \\
0 & 0 & 0 & e
\end{bmatrix}
\]

\[
F = 0 \quad \text{در نتیجه}
\]

\[
\frac{\partial F}{\partial n} = 0 \quad \text{در نتیجه}
\]

\[
\frac{\partial [\text{Det}(M_y)]}{\partial n} = 0
\]

\[
\text{Det}(M_y) = M_{11}(M_{22}M_{33} - M_{23}^2) = 0
\]

\[
(M_{22}M_{33} - M_{23}^2) \neq 0
\]

\[
\text{برای تغییر نشکل کوچک}
\]

\[
f = 0 \quad \text{بین 1 و 2}
\]

\[
\frac{\partial f}{\partial n} = 0
\]

\[
\frac{\partial [\text{Det}(M_y)]}{\partial n} = 0
\]

\[
\text{Det}(M_y) = M_{11}(M_{22}M_{33} - M_{23}^2) = 0
\]

\[
(M_{22}M_{33} - M_{23}^2) \neq 0
\]

\[
\text{نهایت نشکل کوچک}
\]

\[
\text{بین 1 و 2}
\]

\[
\frac{\partial f}{\partial n} = 0
\]

\[
\frac{\partial [\text{Det}(M_y)]}{\partial n} = 0
\]

\[
\text{Det}(M_y) = M_{11}(M_{22}M_{33} - M_{23}^2) = 0
\]

\[
(M_{22}M_{33} - M_{23}^2) \neq 0
\]

\[
\text{نهایت نشکل کوچک}
\]

\[
\text{بین 1 و 2}
\]
در نظر در میانه‌ای از شکل تغییر به مربوط ایجاد گردد. شده است و فاکتور بیشتر به دست آورده شده است.

مراجع

