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Abstract 

Theory of compressive sensing  (CS) is an alternative to Shannon/Nyquist  sampling theorem which 

explained the number of samples requirement in order to have the perfect reconstruction. Perfect re-

construction of undersampled data in CS framework is highly dependent to incoherence of measure-

ment and sparsifying basis matrices which the posterior is usually fulfilled by selecting a random ma-

trix. While Noiselets, as a measurement matrix, have very low coherence with wavelets which are the 

interest of CS, they have never been studied well and compared with other well known Gaussian  and 

Bernoulli measurement matrices, which have been widely used in CS framework, from randomness view 

point. Therefore, the main contribution of this paper is introducing Noiselets and comparing them with 

other measurement matrices in two point of view; randomness and quality of recovered images. In case of 

randomness, the entropy is used as a criterion for computing the randomness. In case of recovered imag-

es, the OMP and PDIP algorithms are applied under sampling rates 30, 40, 60%. 

 

Keywords: Compressive sensing (CS), Noiselets, Gaussian measurement, Bernoulli measurement,  

randomness. 

 

 

1. INTRODUCTION 

Based on Shannon/Nyquist sampling theorem [1] 

introduced in 1949, for perfect reconstruction of 

a sampled signal, the sampling rate must be at 

least twice of the biggest frequency in that signal. 

Accordingly, for big data, compressing before 

storage or transmission becomes necessary. 

Compressive Sensing (CS) [2], is an alternative 

to Shannon/Nyquist sampling theorem for the 

acquisition of sparse or compressible signals. In 

fact, instead of using a periodic impulse for sam-

pling, CS uses random matrices for measurement. 

Although CS may disregard the Nyquist rate,  

itwas proved that under fulfilled of some circum-

stances, the signal would be perfectly recovered. 

 

 

CS Signal recovery is usually based on 1 -norm 

[3], or greedy algorithms such as matching pur-

suit (MP) [4], orthogonal matching pursuit 

(OMP) [5], compressive sampling orthogonal 

matching pursuit (CoSaMP) [6] and primal-dual 

interior-point (PDIP) [7]. For perfect reconstruc-

tion in CS framework, two important factors 

should be satisfied; 1) sparsity of signal which is 

usually explored under some sparsity basis like 

Fourier transform [8], discrete Cosine transform 

[9], and wavelet transform [10], 2) incoherency 

between the measurement and the sparse matri-

ces. The incoherency that measures the largest 

correlation between vectors of measurement and 

sparsifying matrices [11] is a very important fac-

tor in CS applications. Precisely, the less inco-

herency between measurement and sparsifying 
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matrices, the less measured samples are needed 

whereas the signal is recovered perfectly. Well 

known measurement matrices, Random Gaussian 

[2] and Bernoulli [2], have been largely used in 

CS framework whereas Noiselets [12] are not 

known yet. Although Noiselets have very low 

coherence with wavelets as a sparse basis matrix 

[2], they have not been seriously studied as a 

good candidate for CS as a measurement matrix. 

This gave us the motivation to study and compare 

the randomness of Noiselets with both well 

known measurement matrices mentioned above; 

Gaussian and Bernoulli.  

As a matter of fact, the randomness parameter 

of any real matrix is evaluated by obtaining the 

entropy [13]. According to the fact that low en-

tropy indicates high randomness, experiments on 

Gaussian, Bernoulli and Noiselet matrices 

showed that in square sizes, Gaussian has the 

most randomness of all while in non-square sizes 

imaginary part of Noiselets have higher random-

ness. Furthermore, experiments indicated that 

choosing measurement and sparsifying basis with 

low coherence will guaranty the perfect recon-

struction of images, even though the utilized 

measurement matrix has low randomness which 

is Noiselet in our case. 

     The paper is organized as follows. In Section 

2, CS is explained at first. Then Noiselets as a 

new sampling matrix which has a good incoher-

ence with Haar wavelet basis is introduced. Our 

proposed method to calculate randomness of 

measurement matrices and the experimental re-

sults for different scenarios are presented in Sec-

tion 3 and 4 respectively. Finally, we have con-

clusion in Section 5. 

 

2. BACKGROUND 

A. CS Theory 

The CS framework samples data [1] based on a 

linear non-adaptive measurement, is written as:   

     
xy 

 (1)    
 

where x denotes signal or data of interest with 

finite dimension of N  written as 1 NRx ,   is 

the sampling or measurement matrix with size 

NM  which often considered random Gaussian 

or Bernoulli and y  with size 1M  is the ob-

served data. As said before, two fundamental re-

quirements need to be fulfilled in CS theory, in-

cluding: the signal ‘sparsity’ and the ‘incoheren-

cy’. A signal x  is k-sparse if it has k nonzero or 

big elements generally in   domain. The k-

sparse signal x  based on basis matrix,  , is: 

  sx    
                                  (2) 

where 1 NRs  with k nonzero elements denotes 

the sparse representation of signal x  and   
with 

size NN   is the sparse basis matrix. Combining 

Eq. (1) and Eq. (2), the observed signal is, 

sy   (3) 

where    with size NM   is called dic-

tionary matrix. The second CS requirement called 

‘incoherency’ comes, which means having   and 

  matrices that are maximally incoherent to 

each other, then few measurement samples for 

perfect recovery of signal is needed. Coherency 

between these two matrices is [2]:  

],1[),(,,max),(
,1

NN jk
Nji




  
(4) 

where k , j are k-th row of   and j-th col-

umn of   and 1),(   means maximum in-

coherency. Satisfaction of restricted isometry 

property (RIP) [14] guaranties the maximum in-

coherency between the sampling matrix,  , and 

sparse basis matrix  . 

Although recovering x  or equivalently sparse 

signal s  from y is an ill-posed problem because 

of M << N, according to CS theory, the original 

signal can be exactly reconstructed by solving the 

linear programming problem as long as x  is 

sparse in some domain.
 
Despite of sparseness,

 
2  norm gives much attention to the signal ener-

gy and fails to recover signal perfectly. Zero-

norm is perfect for sparse recovery. However, the  

corresponding optimization problem is NP-

Complete and thus it is intractable but surprising-

ly when choosing the 1   norm, it is able to re-

cover signal perfectly as long as it is sufficiently 

sparse and it is expressed as [1]: 
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sytss ˆ:..,ˆ:min
1




 (5) 

     As mentioned in [2], well known random ma-

trices like Gaussian, which are mostly used in 

CS, are largely incoherence with an arbitary basis 

matrix   with size NN   and the incoherency is 

about Nlog2 . Although Noiselets are not as 

popular as random sampling matrices, they have 

good incoherency with fixed basis  matrices 

like Fourier and wavelets [2]. It was proved [2] 

that the coherency between Noiselets and Haar 

wavelets is 2  and that between Noiselets and 

Daubechies D4 and D8 wavelets is about 2.2 and 

2.9 in order. Hence, this motivated us to analyze 

the randomness of different CS measurement ma-

trices with respect to noiselets as a measuring 

matrix. 

 

B. Noiselets 

Before explaining Noiselets matrix in detail, 

three different types of matrix multiplications are 

expressed. Suppose two arbitrary matrix 
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The products in Eqs. (6)-(8) are named matrix 

multiplication, matrix element-wise multiplica-

tion and Kronecker [15]. Noiselets are generated 

by using the last one product; the Kronecker. 

The Noiselet basis, originally presented in 

[12], has received interest recently due to the fol-

lowing facts: 1) being maximally incoherent to 

the Haar basis, 2) having a fast implementation 

algorithm. Thus, they have been employed in CS  

to sample signals that are sparse in wavelet do-

main where Haar is the sparse matrix [16], [17]. 

The procedure of generating Noiselets matrices is 

explained in following. 

It is started with a 11  matrix ]1[1 N , then a 

sequence of noiselet matrices mNNN
242 ,....,, with 

sizes 22 , 44 ,…., mm 22   , are generated. So, 

the Noiselet matrix with size nn  is built up re-

cursively according to: 

 

.2,...,4,2,0,),
2

()11(
2

1
),( 2/  nk

k
NiikN nn

 

(9)
 

.1,...,5,3,1,),
2

1
()11(

2

1
),( 2/ 


 nk

k
NiikN nn

 
(10) 

 

where ),( kNn  denotes the row vector of nN . 

It should be noted that the Noiselet matrices are 

 

not real. As an example 2N and 4N  by using Eqs. 

(9)-(10) are:
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In addition, the elements summation of imag-

inary parts in every Noiselet matrix is always 

equal zero, or in other words, the average value 

of imaginary part of Noiselet matrix, irrespective 

of its size is zero.  

 

3. MATRIX RANDOMNESS EVALUATION 

Choosing a random measurement matrix   in 

CS framework that complies RIP and incoheren-

cy guaranties the signal perfect reconstruction 

[18]. So the randomness of a measurement matrix 

is important for CS implementation. Although 

both random Gaussian, which is optimal for 

sparse recovery, and Bernoulli matrices satisfy 

RIP property [19], [20], they have limited use in 

practice due to the fact that the structure is im-

posed on the measurement matrix by many 

measurement technologies [21], [22]. That is to 

say, Bernoulli matrices are more feasible than the 

Gaussian, because the posterior contain highly 

storage and computation complexity without tak-

ing account of the signal vector precision [19], 

[20]. In this paper we are going to determine and 

compare the randomness of three mentioned 

measurement matrices by means of entropy. 

The entropy of matrix p  with N elements is [13]: 






N

i

ii ppph

1

ln)(  (12) 

entropy value is always positive [13] with 

range of [0, Nln ]. The minimum value, 0)( ph , 

is achieved when only one 
ip  equals 1 and oth-

ers equal  0 whereas the maximum value is 

achieved when all
ip s are equal N1 . 

     Generally, it is concluded [13] that the entropy 

could be used as a measure of matrix random-

ness. In this way, the lower entropy will eventu-

ate higher randomness. Before using the entropy 

as a measure of randomness, elements of meas-

urement matrix should be normalized. As an ex-

ample, if  nnnn  ,,;;,, 1111   with 

size nn  is an arbitrary matrix, the correspond-

ing normalized matrix is 

 nnnnnorm   ,,;;,, 1111   where 
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 . 

Obviously, the randomness interval value of 

any arbitary matrix depends on the two parame-

ters, i.e. elements probability and the matrix size. 

So randomness of different matrices are incom-

parable. For example, zero is expected for the 

randomness of matrix with repetitive elements 

but the calculated randomness by means of en-

tropy doesn't support this idea. So, in order to 

have an ideal number for comparison of random-

ness between different matrices, we have pro-

posed a method which is explained as follows. At 

first, the input matrix is normalized by the 

mean value; i.e. G   where G  is the aver-

age value of the matrix. Then the entropy of new 

matrix is obtained and considered as the measure 

of randomness which is as following: 
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so when matrix  has repetitive elements, the 

average G will be equal to the value of every   

elements, then according to the definition of ran-

domness in Eq. (13), the randomness of matrix 

 is zero.  

 

4. EXPERIMENTAL RESULTS 

In this Section, the randomness of three meas-

urement matrices in CS framework, including: 

Gaussian, Bernoulli and Noiselet are computed. 

In this case, the randomness values of different 

matrix sizes are written in Table 1. 

As it can be seen in Table 1, the randomness 

of Gaussian matrix irrespective of size is always 

greater than both Bernoulli and Noiselet. In order 

to clarify this property, the three mentioned ma-

trix with sizes 128128  and 512512  are shown 

in Fig.1. As it is seen, Gaussian has fully random 

shape whereas Noiselet has repetitive pattern. 

 

Table 1. COMPARING THE  RANDOMNESS  OF GAUSSIAN, BERNOULLI,  AND NOISELET (REAL PART). 

Randomness 

Matrix Size Gaussian Bernoulli Noiselet (Real Part) 

4×4 32  0904.11  4291.9  

16×16 3104  3401.156  3315.536  

64×64 5107621.4   
3108491.2   4101092.2   

128×128 6101445.2   
4101385.1   5108334.1   

256×256 7101836.4   
4105354.4   5104316.7   

512×512 8108408.1   
5108142.1   6102192.6   

 

Despite the real part of Noiselet matrix that 

contains positive elements, imaginary part has 

both negative and positive elements that are same 

valued and equal in numbers. This feature of

 

imaginary part makes the matrix average value 0; 

hence, in our proposed method for calculating the 

randomness, the division of elements to the aver-

age number would be infinity. Owing to the men-

tioned fact, they are not reported in Table 1. 

 
Fig. 1. The pattern of measurement matrices : Gaussian (a)-(b), Bernoulli (c)-(d), and Noiselet (e)-(f) with size 

128x128 (first column) and 512x512 (second column). 
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Whereas it seems that Noiselet cannot be 

used in CS framework according to randomness 

value and repetitive pattern shape, one should 

bear in mind that measurement matrix in CS 

framework is not square but with size of NM 

where NM   . In second part of our experi-

ments, we have calculated the Randomness of 

Gaussian, Bernoulli and Noiselet matrices in 

three sampling rates, i.e. %60,40,30NM and 

written in Table 2. As mentioned before, 

Noiselets are generated in square sizes. To have a 

NM   measurement matrix, a square Noiselet 

matrix of desired size should be generated at first 

and then be cut into 30, 40, 60% of its rows size. 

As an example, for an original matrix with size of 

128128 , when %40NM , the measurement 

matrix size is 163846553 . 

The achieved  results show that for every ma-

trix size, the imaginary part of Noiselet has the 

most randomness and the Bernoulli has the least 

randomness of all. Randomness of Gaussian is 

always higher than the real part of Noiselet ex-

cept in one case which is with sampling rate of 

40% and size of 16×16. 

For visual comparison among using the three 

mentioned measurement matrices, OMP [5] and 

PDIP [7] are used as the recovery algorithms 

when the sampling rates are 30, 40, 60% and 

Haar wavelet is used as the sparse matrix. The 

three original images are shown in Fig.2.  

 

Table 2. Comparing the  Randomness of Gaussian, Bernoulli and Noiselet for Sampling Rate 30,40,60%. 

Sampling 

Rate (%) 
Size 

Randomness 

Gaussian Bernoulli 
Noiselet 

(Real parts) 

Noiselet 

(Imaginary parts) 

30 

16×16 6104631.1   4103656.1   5102352.2   22106917.3   

32×32 9103208.1   5101877.2   6107868.7   25104107.1   

64×64 10103669.3   6104857.3   8104602.2   26100397.9   

40 

16×16 6104315.7   4108012.1   8104602.2   22106283.5   

32×32 9107362.4   5109056.2   6109987.9   25101773.2   

64×64 11102652.1   6106511.4   8102789.3   26102095.1   

60 

16×16 7104940.7   4107407.2   5104306.4   23100442.1   

32×32 10109995.4   5103730.4   5104306.4   24102001.4   

64×64 11109506.7   6109804.6   8109207.4   26102626.1   

 

Table 3. PSNR Values of Recovered Images of Fig.2 using OMP Algorithm. 

 

Measurement Matrix 

Image(a) Image(b) Image(c) 

Gaussian Bernoulli Noiselet Gaussian Bernoulli Noiselet Gaussian Bernoulli Noiselet 

Sampling 

Rates 

(%) 

30 29.22 29.26 34.01 28.61 28.89 32.65 28.24 28.31 29.90 

40 29.92 29.87 35.36 28.98 28.99 32.83 28.34 28.35 30.21 

60 32.33 31.78 36.22 29.68 29.59 33.15 28.51 28.47 30.70 
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Table 5. PSNR Values for Recovered Images of Fig. 2, Using PDIP Algorithm. 

 

 

 
Fig. 2. The recovered images shown in Fig. 2 using OMP algorithm. 

 

 
Fig. 3. The recovered images shown in Fig. 2 using PDIP algorithm. 

 

 

Fig. 4. Test images:  (a) Lena eye   (b) Cameraman  (c) Shape. 

 

We should notify that the real and imaginary 

parts of Noiselets cannot be used separately as a 

measurement matrix in CS so we have used com-

plex Noiselets in our simulations. The recovered 

images are shown in Fig. 3 and Fig. 4.   

As far as Noiselets are complex valued, the 

recovered images using this measurement will 

also be complex valued; hence, we have used 

their absolute value to represent images. In this 

case, the dynamic range of the recovered images 

are in interval [0,255]. According to visual results 

shown in  Fig. 3 and Fig. 4, it can be concluded 

that PDIP recovery algorithm has done better 

recovery in comparison with OMP algorithm. 

Besides, the visual quality of recovered images 

also increases by increasing the measurement 

rates. Furthermore, it is seen that between the 

three candidate measurements, Noiselets have 

performed better than others due to the low co-

herence which they have with Haar sparsifying 

 

Measurement Matrix 

Image(a) Image(b) Image(c) 

Gaussian Bernoulli Noiselet Gaussian Bernoulli Noiselet Gaussian Bernoulli Noiselet 

Sampling 

Rates 

(%) 

30 30.27 30.23 33.75 29.09 28.89 32.54 28.32 27.61 28.65 

40 32.14 31.65 34.92 29.46 29.12 34.30 28.79 28.60 28.89 

60 35.23 34.31 40.42 31.53 31.47 32.17 29.00 29.06 29.59 
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basis. To support the visual conclusion, we have 

also calculated the image assessment named, 

peak signal to noise ratio (PSNR) [23] for the 

recovered images. The achieved PSNR values are 

written in Table 3 and Table 4 for OMP and 

PDIP recovery algorithms respectively. 

The PSNR values show the high performance 

of using Noiselets in comparison with Gaussian 

and Bernoulli. To put in a nut shell, it should be 

mentioned that even though Noiselets have less 

randomness compared to Gaussian measurement 

matrix, they perform well in CS framework when 

the sparsifying matrix is Haar wavelet and this all 

is related to the low coherence of these two ma-

trices. 

 

5. CONCLUSION 

Satisfing the RIP condition and being 

incoherence with basis matrix, CS needs to 

design a stable measurement matrix. In this 

paper, the Noiselets properties are studied 

pricisely in two point of view; matrix randomness 

by means of entropy and performance of 

recovery algorithms. Although the randomness of 

Noiselets in comparison with Gaussian is poor, 

the performance of both OMP and PDIP recovery 

algorithms outperforms both Gaussian and 

Bernoulli when Noiselets as the measurement 

matrix and wavelet as sparse matrix are used. 

However, being complex valued of Noiselets is 

still the bottleneck of using them in real 

applications. 
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