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Abstract 

This paper presents a new approach to unit commitment (UC) problems using a particle swarm opti-

mization (PSO) technique. The mid term UC problem has a cost function with equality and inequality 

constraints that make the problem of finding the global optimum difficult by using any mathematical 

approach. In this paper, a modified PSO (MPSO) mechanism is suggested to deal with the equality  

and inequality constraints in the UC problems. The proposed MPSO is applied to a 10-unit test sys-

tem and the results of the MPSO are compared with the results of conventional numerical methods 

such as mixed integer nonlinear programming (MINLP). 
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1. INTRODUCTION 

Unit commitment (UC) in power systems in-

volves the proper scheduling of the on/off states 

of all the units in the systems. In addition to ful-

fill a large number of constraints, the optimal UC 

should meet the load demand plus the reserve 

requirements at every interval so that the total 

cost is minimum. The UC is a combinatorial op-

timization problem with both binary and continu-

ous variables. The number of combinations of 0–

1 variables grows exponentially as being a large-

scale problem. Therefore, UC is one of the most 

difficult problems in the power systems. 

The UC problem is commonly a nonlinear, 

large-scale, mixed integer combinatorial prob-

lem. The exact solution of the UC problem can 

be obtained by complete enumeration of all fea-

sible combinations of the generations of units, 

which is impossible for realistic power systems 

[1]. The needs for practical UC solutions encour-

aged the development of various methods provid-

ing sub-optimal but efficient scheduling for real 

sized power systems consisting of hundreds of 

generators. 

Because of the large economic benefits that 

could result from the unit scheduling improve-

ment, a considerable attention has been devoted 

to develop problem solution methods. Various 

mathematical programming and heuristic based 

approaches such as the dynamic programming 

[2], the neural networks [3], the simulated an-

nealing [4], the evolutionary programming [5], 

the genetic algorithms [6], the  Lagrangiane re-

laxation [7], the branch and bound algorithm [8] 

and the tabu search [9] approaches have been 

devoted to solve the UC problem. 

The rest of this paper is organized as follows. 

In Section II, the problem formulation and the 

constraints of the mid term UC are discussed. 

The PSO method for solving this problem in 
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power systems is proposed in Section III. In sec-

tion IV, the 10-unit system was used and the op-

timization problem was solved using the PSO 

method and the results have been compared with 

the conventional method (mixed integer nonline-

ar programming). At last, the conclusion is drawn 

in Section V. 

2. Mid Term UC Problem Formulation 

From the definition of UC mentioned above, the 

objective function of the mid term UC problem is 

to minimize the production cost over the schedul-

ing time horizon (e.g., 12 month). The mid term 

UC problem can be formulated mathematically as 

an optimization problem as follows: 

Object Function -- total generation cost including 

fuel and operation costs: 
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System-wide Constraints 

-- System demand 
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-- Reserve requirement 

The reserve requirement is assumed to equal a 

percent of the total system load (e.g. %5). Thus, 

the operating reserve must be greater than this 

reserve requirement. 
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      (3.3) 

Unit Constraints 

  

-- Maximum and minimum generation limits 

max,min, ),(),( GgGRGDGg PtgPtgPP   (5) 

 

3. Implementation OF PSO Method 

A. Overview of the PSO 

Particle Swarm Optimization (PSO) was first 

proposed by Kennedy and Eberhart [10] in 1995. 

This technique was inspired by the choreography 

of a bird flock and can be seen as a distributed 

behavior algorithm that performs the multidimen-

sional search. According to PSO, either the best

 

local or the best global particle to help it fly 

through a hyperspace affects the behavior of each 

particle. Moreover, a particle can learn from its 

past experiences to adjust its flying speed and 

direction. Therefore, by observing the behavior 

of the flock and memorizing their flying histo-

ries, all the particles in the swarm can quickly 

converge to near-optimal geographical positions 

with well-preserved population density distribu-

tion. 

Bird flocking optimizes a certain objective 

function. Each agent knows its best value so far (

pbest ) and its position. Moreover, each agent 

knows the best value so far in the group ( gbest ) 

among pbest . Namely, each agent tries to modi-

fy its position using the following information: 

• The distance between the current position 

and its best position so far, 

• The distance between the current position 

and the best position of the group. 

Suppose that the search space is D-

dimensional, then the ith particle of the swarm 

can be represented by a D-dimensional vector, 

),...,,( 21 iDiii xxxX  . The velocity (position 

change) of this particle can be represented by 

another D-dimensional vector ),...,,( 21 iDiii vvvV  . 

The best previously visited position of the ith 

particle is denoted as ),...,,( 21 iDiii ppppbest 



Signal Processing and Renewable Energy, March  2017                                                                                                                 13 

. Defining gbest  as the best particle in the 

swarm, then the swarm is updated according to 

the following equation: 

)()( 2211
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Where        

d = 1, 2, . . .,D;  

i = 1, 2, . . . , N,  

k = 1, 2, . . ., the iteration number, 

In this velocity updating process, the values of 

parameters such as w , c1 and c2 should be de-

termined in advance. In general, the weighting 

function (w) of the equation (6) is set to the fol-

lowing equation: 

iter
iter
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The model using (7) is called “inertia weights 

approach (IWA)” [11].By using the above equa-

tion, the diversification characteristic is gradually 

decreased and a certain velocity, which gradually 

moves the current searching point close to pbest

and gbest  can be calculated. The current posi-

tion (the searching point in the solution space) 

can be modified by the following equation: 
11   k

id

k

id

k

id vxx   (8) 

Fig. 1 shows a concept of modification of a 

searching point by PSO using the modified veloc-

ity and the position of the individual particle i 

based on (6) and (8) if the values of 121 ,,, crrw  

and 2c  are one. 

  

 

 
Fig. 1. Concept of modification of a searching point 

by PSO . 

 

 

B.Modified PSO for Mid Term UC Problem 

In this section, a new approach to implement the 

PSO algorithm will be described in solving the 

UC problems. Especially, a suggestion will be 

given on how to deal with the equality and ine-

quality constraints of the UC problems when 

modifying each particle search point in the PSO 

algorithm. The process of the modified PSO al-

gorithm can be summarized as follows: 

1. The initialization of a group at random 

while satisfying constraints. 

2. The velocity and position updates while sat-

isfying constraints. 

3. The update of Pbest and Gbest. 

4. Go to Step 2 until satisfying stopping criteria. 

In the subsequent sections, the detailed im-

plementation strategies of the MPSO are de-

scribed. 

1) Initialization and Structure of Particles: In 

the initialization process, a set of particles is cre-

ated at random. In this paper, the structure of a 

particle for mid term UC problem is composed of 

a set of elements (i.e., generation and reserve 

outputs in each interval). Therefore, the particle 

i  position at the iteration 0 can be represented as 

the vector of  

),...,,,,...,,( 0

,

0

,2

0

,1

0

,

0

,2

0

,1

0

tGRiGtGRitGRitGDiGtGDitGDii PPPPPPX 

 where G  is the number of generators and 

Tt ,...,2,1  is the index of time period (e.g. 

12T  for 12 month). Thus, the dimension of 

each particle is TG2  in this study. In other 

words, the particle has T  sections for all units 

power generation and reserve. 

The velocity of the particle i  (i.e., 

),...,,( 00

2

0

1

0

iDiii vvvV  ) corresponds to the genera-

tion update quantity covering all the generators. 

The elements of position and velocity have the 

same dimension, i.e., MW in this case. Note that 

it is very important to create a group of individu-

als satisfying the equality constraint (3) and ine-

quality constraints (4) and (5). That is, summa-
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tion of all elements of the particle i  (i.e., 




G

g

tGDigP
1

0

,
) should be equal to the total system 

demand )(tPd
 at any time interval and the created 

element g  of the particle i  at random (i.e., 

0

,tGDigP  or 
0

,tGRigP ) should be located within its 

boundary. Although we can create the element g  

of the particle i  at random satisfying the  

inequality constraint by mapping [0,1] into 

],[ max,min, GgGg PP when the unit is on. Also, it is 

necessary to develop a new strategy to handle the 

equality constraint. To do this, the following pro-

cedure is suggested for any particle in a group: 

Step 1. Set 
0

GDigP  of each section of the parti-

cle i  to modeling the on/off state of the unit at 

random by this equation: 
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Step 2. Set 1g . 

Step 3. The value of each element of the parti-

cle is determined by the sharing principle method 

from the total system demand ( )(tPPureLoad d ) 

in each time period.  
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Where Ψ  is the set of units which power is 

not reached to the upper/lower bound limits. If 

the newGDigP )( 0
 is in the range of  operating region 

of the unit g  then go to Step 6; otherwise go to 

Step 4. 

Step 4. If newGDigP )( 0
 is lower than min,GgP , 

then 
min,

0 )( GgnewGDig PP  . If newGDigP )( 0
 is greater 

than max,GgP , then max,

0 )( GgnewGDig PP  . 

Step 5. 
newGDigPPureLoadPureLoad )( 0  and 

    goldnew  ΨΨ . 

Step 6. If Gg   then go to step 7, otherwise 

1 gg  and go to step 3. 

Step 7. If the )()(
1

0 tPP d

G

g

newGDig 


 then go to 

step 8, otherwise go to step 1. 

 

 

 

Step 8. . Set the reserve power of each unit  

(
0

GRigP ) for each individual i  by this equation: 
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Step 9. If the )(
1
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G

g
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 then go to 

step 10, otherwise go to step 8. 

 

Step 10. Stop the initialization process. 

The above procedure must be repeated for all of 

the time periods. After creating the initial position 

of each individual, the velocity of each individual 

is also created at random. The initial of individual 

is set as the initial position of individual and the 

initial Gbest is determined as the position of an 

individual with minimum payoff of (1). 

2) Velocity Update: To modify the position of 

each individual, it is necessary to calculate the 

velocity of each individual in the next stage, 

which is obtained from (6). In this velocity updat-

ing process, the values of parameters such as w , 

1c  and 2c  should be determined in advance. In 

this paper, the weighting function is defined as 

the equation (7). 

3) Position Modification Considering Con-

straints: The position of each individual is modi-
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fied by (8). The resulting position of an individu-

al is not always guaranteed to satisfy the equali-

ty/inequality constraints due to the over/under 

velocity. If any element of an individual violates 

its inequality constraint due to the over/under 

speed then the position of the individual is fixed 

to its maximum/ minimum operating point. To do 

this, the following procedure is suggested for any 

individual in a group: 

Step 1. 
1k

GDigP  and 
1k

GRigP  for each particle i  

are calculated by the equation (8). 

Step 2. 1g . 

Step 3. If the 
1k

GDigP  is in the range of its oper-

ating region of the unit g  then go to Step 4; oth-

erwise go to Step 5. 

Step 4. If 
1k

GDigP  is lower than min,GgP , then 

01 k

GDigP . If 
1k

GDigP  is greater than max,GgP , then 

max,

1

Gg

k

GDig PP 
 and 01 k

GRigP . Also, if 01 k

GDigP  

or 01 k

GRigP  then 01 k

GRigP . If 

1

max,

1   k

GDigGg

k

GRig PPP  then 

1

max,

1   GDigGg

k

GRig PPP . 

Step 5. If Gg   then go to step 6, otherwise 

1 gg  and go to step 3. 

Step 6. The ratio 



G

g

k

GDigd PtP
1

1 )()(  is calculated. 

If this ration is greater than 1 then go to step 7, 

otherwise go to step 12. 

Step 7. The value of each element of an indi-

vidual is determined by the sharing principle 

method from the total system demand 


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Where Φ  is the set of units that its power is 

reached to upper bound limit. 

Step 8. If the new

k

GDigP )( 1
 is in the range of its 

operating region of the unit g  then go to Step 7 

for the next unit; otherwise go to Step 9. 

Step 9. If new

k

GDigP )( 1
 is greater than max,GgP , 

then 
max,

1 )( Ggnew

k

GDig PP  . 

 

 

 

Step 10. 
new

k

GDigPPureLoadPureLoad )( 1  and 

    goldnew  ΦΦ . 

Step 11. If Gg   then go to step 17, and 

otherwise go to step 7 for the next unit. 

Step 12. The value of each element of an indi-

vidual is determined by the sharing principle 

method from the total system demand 
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    Where Ψ  is the set of units that its power is 

reached to lower bound limit. 

Step 13. If the new

k

GDigP )( 1
 is in the range of its 

operating region of the unit g  then go to Step 12 

for the next unit; otherwise go to Step 14. 

Step 14. If 
new

k

GDigP )( 1  is lower than min,GgP , 

then 
min,

1 )( Ggnew

k

GDig PP  . 

Step 15. 
new

k

GDigPPureLoadPureLoad )( 1  and 

    goldnew  ΨΨ . 

 

Step 16. If Gg   then go to step 17, and 

otherwise go to step 12 for the next unit. 

Step 17. If the )()(
1

1 tPP d

G

g

new

k

GDig 


  then go to 
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step 18, otherwise we must create a new particle 

from initialization process. 

Step 18. Set the reserve power of each unit  

(
1k

GRigP ) for each individual i  by this equation: 
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Step 19. If the )(
1

1 tPP R

G

g

k

GRig 


  then go to step 

20, otherwise go to step 18. 

Step 20. The above procedure must be repeat-

ed for all of the time periods and then stop the 

updating process. 

4) Update of Pbest and Gbest: The Pbest of 

each individual at iteration and the Gbest is up-

dated with respect to the cost function. 

5) Stopping Criteria: The MPSO is terminat-

ed if the iteration approaches to the predefined 

maximum iteration. 

 

4. NUMERICAL TESTING RESULTS 

The proposed optimization algorithm is applied 

to a model system to verify its effectiveness. This 

approach is applied to the test system, which has 

10 generators. The input data for a 10-generator 

system are given in table 1 [9]. The annual peak 

load is 1500 MW and the percent of each interval 

time period is shown in table 2. 

 

Table 1.Generator Cost And Emission Coefficients 

Coeff. Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

max,GP (MW) 455 455 130 130 162 

min,GP (MW) 150 150 20 20 25 

Fixed O&M Cost 

($/Mw-yr) 
5000 5000 7000 7000 7000 

Variable O&M Cost ($/Mwh) 0.3 0.3 0.8 0.8 0.8 

A ($/hr) 1000 970 700 680 450 

B ($/Mwh) 16.19 17.26 16.6 16.5 19.7 

C ($/Mwh) 0.00048 0.00031 0.002 0.00211 0.00398 

Coeff. Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

max,GP (MW) 80 85 55 55 55 

min,GP (MW) 20 25 10 10 10 

Fixed O&M Cost 

($/Mw-yr) 
8500 10000 10000 10000 10000 

Variable O&M Cost 

($/Mwh) 
0.9 0.8 0.9 0.9 0.9 

a 370 480 660 665 670 

b 22.26 27.74 25.92 27.27 27.79 

c 0.00712 0.00079 0.00413 0.00222 0.00173 
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To assess the efficiency of the proposed 

MPSO, it has been applied to UC problems 

where the objective functions can be either 

smooth or non-smooth. The results obtained from

 the MPSO are compared with the results that are 

obtained by the mixed integer nonlinear pro-

gramming (MINLP). 

 

 

Table 2. Load Pattern And Reserve Requirement 
Period 

(Month) 
Load (%) 

Reserve 

Requirement(MW) 

Period 

(Month) 

Load 

(%) 

Reserve 

Requirement (MW) 

1 87.8 65.85 7 88 66 

2 88 66 8 80 60 

3 75 56.25 9 78 58.5 

4 83.7 62.775 10 88.1 66.075 

5 90 67.5 11 94 70.5 

6 89.6 67.2 12 100 75 

 

Tables 3 and 4 show the results of optimal 

generator scheduling (mid term UC) that is ob-

tained by MINLP. The total cost of the test 

 

system in this annual scheduling is 268.98 mil-

lion dollars per year. Also, figure 2 presents the  

results of the mid term UC of the test system. 

 

Table 3. Optimal Result For Minlp Solution 
Period 

(Month) 

Contribution of Units in Load Supplying (MW) 

1 2 3 4 5 

1 455 455 130 130 127 

2 455 455 130 130 130 

3 455 455 130 0 85 

4 455 455 130 130 85.5 

5 455 455 130 130 135 

6 455 455 130 130 149 

7 455 455 130 130 130 

8 455 455 130 130 30 

9 455 430 130 130 25 

10 455 455 130 130 131.5 

11 455 455 130 130 162 

12 455 455 130 130 162 

Period 

(Month) 

Contribution of Units in Load Supplying (MW) 

6 7 8 9 10 

1 20 0 0 0 0 

2 20 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 20 25 0 0 0 

6 0 25 0 0 0 

7 20 0 0 0 0 

8 0 0 0 0 0 

9 0 0 0 0 0 

10 20 0 0 0 0 

11 53 25 0 0 0 

12 80 25 53 10 0 
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Fig. 2. Mid Term Unit Commitment Results (MINLP Solution). 

 

Table 4. Optimal Result for Minlp Solution 
Period 

(Month) 

Contribution of Units in Reserve Supplying (MW) 

1 2 3 4 5 

1 0 0 0 0 35 

2 0 0 0 0 32 

3 0 0 0 0 56.25 

4 0 0 0 0 62.775 

5 0 0 0 0 7.5 

6 0 0 0 0 7.2 

7 0 0 0 0 32 

8 0 0 0 0 60 

9 0 25 0 0 33.5 

10 0 0 0 0 30.5 

11 0 0 0 0 0 

12 0 0 0 0 0 

Period 

(Month) 

Contribution of Units in Reserve Supplying (MW) 

6 7 8 9 10 

1 30.85 0 0 0 0 

2 34 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 60 0 0 0 

6 0 60 0 0 0 

7 34 0 0 0 0 

8 0 0 0 0 0 

9 0 0 0 0 0 

10 35.575 0 0 0 0 

11 10.5 60 0 0 0 

12 0 60 2 13 0 

 

 

There are several parameters to be determined 

for the implementation of the MPSO such as in 

(7) and (10) as well as in (13). In this paper these 

parameters have been determined through the 

experiments.  

1) The values of 
maxw  and 

minw  are assumed 1.0 

and 0.1. 

2) The values of 1c  and 2c  are varied from 0.1 to 

1.0. 

3) The value of the itermax is assumed to 50.

 

 

This study is repeated for five different sizes 

of population (20, 40, 60, 80 and 100). Table 5 

shows the best solution of PSO at different values 

of constants. The best optimal solution of MPSO 

method is obtained at 8.01 c , 7.02 c  and 

40N . Total cost of the test system in this annu-

al scheduling is 271.21 million dollars per year. 

Tables 6 and 7 show the mid term UC results of 

these conditions. 
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Table 5. Best Results Of Pso For Different Values Of 

Constants 
Population 

1c  2c  Total Cost 

(M$) 

20 0.3 0.1 272.07 

40 0.8 0.7 271.21 

60 0.1 0.7 271.37 

80 0.7 0.1 271.6 

100 0.2 0.7 271.22 

 

5. CONCLUSIONS 

This paper presents a new approach to the mid 

term UC problems based on the PSO algorithm. 

A new position adjustment strategy is incorpo-

rated in the PSO method to provide the solutions 

which satisfy the constraints. The equality con-

straint in the UC problem is resolved by the prin-

ciple sharing method between the generating 

units. This problem is applied to a 10-unit test 

system and is solved using the Mixed Integer 

Non Linear Programming (MINLP) and the PSO 

methods. Numerical testing results clearly show 

the trade-off between minimizing cost and satis-

fying constraints. For a given desired cost, the 

particle swarm optimization method can generate 

a near optimal schedule. 
 

Table 6. Optimal Result for Pso Solution 
Period 

(Month) 

Contribution of Units in Load Supplying (MW) 

1 2 3 4 5 

1 458.4 453.4 130 130 68.9 

2 455 308 130 130 162 

3 445.7 446 128.9 92.4 0 

4 454.7 454.4 129.9 129.1 87.4 

5 451.3 452 129.7 129.1 89.1 

6 453.3 453.5 118.7 129.5 61.6 

7 436.1 446.5 129.6 129.6 44.4 

8 454.1 452.9 129.9 122.1 41 

9 453.7 454.8 96.6 128.9 36 

10 455 455 130 130 71.5 

11 452.1 454.5 100.3 127.5 156.5 

12 455 455 130 130 162 

Period 

(Month) 

Contribution of Units in Load Supplying (MW) 

6 7 8 9 10 

1 80 0 0 0 0 

2 80 0 0 0 55 

3 0 0 12 0 0 

4 0 0 0 0 0 

5 77.2 0 21.6 0 0 

6 77.6 49.8 0 0 0 

7 79.7 0 0 0 54 

8 0 0 0 0 0 

9 0 0 0 0 0 

10 80 0 0 0 0 

11 65.4 0 15.6 0 38.2 

12 63.8 34.7 34 35.5 0 
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Fig. 3. Mid Term Unit Commitment Results (PSO Solution). 
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NOMENCLATURE 

ggg cba ,,  The coefficients of generating unit 

g  

21 ,cc  Weighting factors called accelera-

tion constants 

D  Dimension of the particle 
k

dgbest  Dimension d of the best particle in 

the swarm group until iteration k 

g  Index for generator unit 

iter  Current iteration number 

G  Number of generator units 

k  The iteration number 

itermax  Maximum iteration 

N  The size of the swarm 

)(tn  Number of hours in time t  (e.g. 720 

hr) 

)(& gMFCO  Operation and maintenance fixed 

cost of the unit g , in $/Mw-yr 

)(& gMVCO  Operation and maintenance varia-

bles cost of the unit g , in $/Mwh 

k

idpbest  Dimension d of the own best posi-

tion of particle i  until iteration k 

)(tPd  System demand at time t , in MW 

min,GgP  Lower limit of generation of the unit 

g , in MW 

max,GgP  Upper limit of generation of the unit 

g , in MW 

),( tgPGD  Load contribution of the unit g  at 

time t , in MW 

)(tPR
 System reserve requirement at time 

t , in MW 
k

tGDigP ,  Load contribution of the unit g  at 

the iteration k and the time t  in the 

particle i , in MW 
k

tGRigP ,  Reserve contribution of the unit g  at 

the iteration k and the time t  in the 

particle i , in MW 

),( tgPGR
 Reserve contribution of the unit g  at 

the time t , in MW 

21,rr  Random numbers, uniformly distrib-

uted in [0,1] 

rand  Random number, uniformly distribut-

ed in [0,1] 

t  The index of time 

T  Number of periods under study (12 

Month) 

),( tgU  The commitment state of the unit g  

at the time t  (on = 1, off = 0) 

k

idv  Dimension d of the velocity of the 

particle i  at the iteration k 

w  Weighting function 

maxw  The final value of weighting coeffi-

cient 

minw  The initial value of weighting coeffi-

cient 
k

idx  Dimension d of the current position of 

the particle i  at the iteration k 

 

 

REFERENCES  

[1] J. Wood and B. F. Wollenberg, “Power 

system generation, operation and con-

trol,” 2nd ed., New York: John Wiley, 

1996. 

[2] Z. Ouyang and S. M. Shahidehpour, “An 

intelligent dynamic programming for unit 

commitment application,” IEEE Trans. 

Power System, vol. 6, no. 3, pp. 1203–

1209, Aug. 1991. 

[3] H. Sasaki, et al., “A solution method of 

unit commitment by artificial neural net-

works,” IEEE Trans. Power Syst., vol. 7, 

pp. 974–981, Aug. 1992. 

[4] U. D. Annakkage, et al., “Unit commit-

ment  by parallel simmulated annealing,” 

Proc. Inst. Elect. Eng., Gen. Transm. 

Dist., vol. 142, pp. 595–600, 1995. 

[5] K. A. Juste, et al., “An evolutionary pro-

gramming solution to the unit commit-

ment problem,” IEEE Trans. Power Sys-

tem, vol. 14, no. 4, pp. 1452–1459, Nov. 

1999. 



22                                                                     Siahkali. Mid Term Unit Commitment Using Modified Particle Swarm Optimization 

[6] G. Damousis, et al., “A solution to the 

unit-commitment problem using integer-

coded genetic algorithm,” IEEE Trans. 

Power System, vol. 19, no. 2, pp. 1165–

1172, May 2004. 

[7] W. L. Peterson and S. R. Brammer, “A 

capacity based Lagrangian relaxation 

unit commitment with ramp rate con-

straints,” IEEE Trans. Power Syst., vol. 

10, no. 2, pp. 1077–1084, May 1995. 

[8] I. Cohen and M. Yoshimura,  

“A branch-and-bound algorithm for unit 

commitment,” IEEE Trans. Power App. 

System, vol. PAS-102, no. 2, pp. 444–

451, Feb. 1983. 

[9] H. Mori and O. Matsuzaki, “Application 

of priority-list-embedded tabu search to 

unit commitment in power systems,” 

Inst. Elect. Eng. Jpn., vol. 121-B, no. 4, 

pp. 535–541, 2001. 

[10] J. Kennedy and R. C. Eberhart, “Particle 

swarm optimization,” IEEE Int. Conf. 

Neural Net., Australia, pp. 1942–1948, 

Nov. 1995. 

[11] Y. Fukuyama, et al., “A particle swarm 

optimization for reactive power and volt-

age control considering voltage security 

assessment,” IEEE Trans. Power Syst., 

vol. 15, pp. 1232–1239, Nov. 2000. 

[12] K. A. Juste, et al., “An evolutionary pro-

gramming solution to the unit commit-

ment problem,” IEEE Trans. Power 

Syst., vol. 14, no. 4, pp. 1452-1459, Nov. 

1999. 

 

 


