- Axsate, R. S. (2006). Inventory control, 2nd edition, New York: Spriner.
- Deuermeyer, B. L., Schwarz, L.B. (1981). "A model for the analysis of system service level in warehouse-retailer· distribution systems: the identical retailer case". Presented in: Schwarz, L.B. (1981). Multilevel Production/Inventory Control systems: Theory and Practice, Elsevier science Ltd.
- Graves, S. C. (1985). "A Multi-Echelon Inventory Model for a Repairable Item with one-for-one Replenishment". Management science, 31(10): 1247-1256.
- Almeder, C., Preusser, M., & Hartl, R. F. (2009).Simulation and optimization of supply chains: alternative Or complementary approaches? OR Spectrum, 31, 95-119.
- Amiri, M., Seif barghy, ·M,, Olfat, L., Razavi Hajiagha, S.H. (2012). "Determination of a desirable inventory policy in a three echelon multilayer supply chain with normal demand". International Journal of Industrial Engineering and Production Research, 23(1): 65-72.
- Axsater, S. (1990). "Simple Solution Procedure for a Class of Two-Echelon Inventory Problem". Operatians Research, 38(1): 64-69.
- Axsater, s. (2002). "Approximate optimization of a two-level distribution inventory system". International Journal of Production Economics, 81-82: 545-553.
- Cachon, G.P. (2001). "Exact Evaluation of Batch-ordering Inventory Policies in Two-Echelon supply chains with Periodic Review". Operations Research: 49(1): 79-98.
- Chu, Y., You, F., & Wassick, J. M. (2014). Hybrid method integrating agent-based modeling and heuristic tree search for scheduling of complex batch processes. Computers & Chemical Engineering, 60, 277-296.
- Chu, Y., You, F., Wass1ck, J.M., & Agarwal, A. (2014).Integrated planning and scheduling under production uncertainties: Bi-level model formulation and hybrid solution method. Computers & chemical Engineering, DOI: 10. 1016 /j . compchemeng. 2014.02.023. With general network structure via agent-based modeling. AIChE Journal, 59, 2884-2906.
- Chu,Y., You, F., Wasslck, J.M., & Agarwal.A. (2014). Simulation – based optimization framework for multi – echelon inventory systems under uncertainty. computer & chemical Engineering , 73, 1-16.
- Clark, A. J., Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem". Management science, 6(4):475-490.
- Gao,J. , Wang, w. D. (2008). "Simulation-based optimization and its application in multi-echelon network stochastic inventory system". 7th International conference on system simulation and scientific computing, 10-12 October, china, Beijing, 1302-1307.
- Ghiami, Y., Williams, T., & Wu, Y. (2013). A two-echelon inventory model for a deteriorating item with stock-dependent demand, partial backlogging and capacity constraints. European Journal of Operational Research.
- Ivanov, D., Dolgui, A., & Sokolov, B. (2012). Applicability of optimal control theory to adaptive supply chain planning and scheduling. Annual Reviews in control, 36, 73-84.
- Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G., & Eversdyk, D. (2008). Integrated safety stock management for multi-stage supply chains under production capacity constraints. Computers & chemical Engineering,32,2570-2581.
- Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G., V. & Eversdyk, D. (2004). A Simulation based optimization approach to supply chain management under demand uncertainty. Computers & chemical Engineering, 28, 2087-2106.
- Kochel, P., Nielander, U. (2005). "Simulation-based optimization of multi-echelon inventory systems".International Journal of Production Economics. 93-94(1): 505-513.
- Mele, F. D., Guillen, G., Espuna, A., & Puigjaner, L.(2006).A simulation-based optimization framework for parameter optimization of supply-chain networks. Industrial & Engineering chemistry Research, 45, 3133- 3178.
- Melouk, S., Freeman, N., Miller, D., Dunning, M.,(2013). Simulation optimization based decision support tool for steel manufacturing. Int. J. Prod. Econ. 141 (1), 269–276.
- Nikolopoul, A., & Ierapetritou, M. G. (2012). Hybrid simulation based optimization approach for supply chain management. Computers & chemical Engineering, 47,183-193.
- O’Donnell, T., Maguire, L., McIvor, R., & Humphreys, P. (2006). Minimizing the bullwhip effect in a supply chain using genetic algorithms. International Journal of Production Research, 44, 1523–1543.
- Pasandideh, S. H. R., Niaki, S. T. A., & Nia, A. R. (2011). A genetic algorithm for vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Systems with Applications, 38, 2708 –2716.
- Perea-Lopez, E., Ydstie,B.E., & Grossmann, I.E.(2003). A model predictive control strategy for supply chain optimization. Computers & chemical Engineering, 27, 1201- 1218.
- Silva,C.A., Sousa, J.M.C. Runkler, T.A., &Dacosta, J.(2006). Distributed optimization of a logistic system.
- Sherbrook, C.C. (1968). "Metric: A Multi- Echelon Technique for Recoverable Item Control". Operations Research, 16(1): 122- 141.14- Schwartz,j.D., Wang, W.L.& Rivera, D.E.(2006). Simulation- based optimization of process control policies for inventory management in supply chains. Automatica, 42, 1311- 1320.
|