تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,303 |
تعداد دریافت فایل اصل مقاله | 54,843,926 |
The new Implicit Finite Difference Method for the Solution of Time Fractional Advection-Dispersion Equation | ||
Theory of Approximation and Applications | ||
مقاله 5، دوره 12، شماره 1، مرداد 2018، صفحه 65-76 اصل مقاله (292.93 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
Hamid Reza Khodabandehloo* 1؛ Elyas Shivanian2؛ Sh. Mostafaee2 | ||
1Department of Mathematics, Payame Noor University (PNU),45771-13878, Qeydar, Zanjan, Iran | ||
2Department of Mathematics, Imam Khomeini International University, Qazvin, Iran | ||
چکیده | ||
In this paper, a numerical solution of time fractional advection-dispersion equations are presented. The new implicit nite difference methods for solving these equations are studied. We examine practical numerical methods to solve a class of initial-boundary value fractional partial differential equations with variable coefficients on a nite domain. Stability, consistency, and (therefore) convergence of the method are examined and the local truncation error is O(Δt + h). This study concerns both theoretical and numerical aspects, where we deal with the construction and convergence analysis of the discretization schemes. The results are justied by some numerical implementations. A numerical example with known exact solution is also presented, and the behavior of the error is examined to verify the order of convergence. | ||
مراجع | ||
[1]Goreno R., Mainardi F., Scalas E., Raberto M., Fractional calculus and continuous-time nance. III, The diusion limit. Mathematical nance (Konstanz, 2000), Trends in Math., Birkhuser, Basel, 2001, pp. 171-180. [2]Lubich C., Discretized fractional calculus, SIAM J. Math. Anal.17 (1986) 704719.13. [3]Meerschaert M. M. , Tadjeran C ., Finite dierence approximations for fractional advection - diusion ow equations, J.comput. Appl. Numer. Math.172 (2004) 6577. [4]Podlubny I., Fractional Dierential Equations, Academic Press, New York, 1999. [5]Samko S., Kilbas A., Marichev O., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993. [6]Oldham K.B., Spanier J., The Fractional Calculus, Academic Press, New York, 1974. [7]Tadjeran C., Meerschaert M. M., H.P. Scheer, A second-order accurate numerical approximation for the fractional diusion equation, J. Comput. Phys. 213 (2006) 205-213. [8]Miller K., Ross B., An Introduction to the Fractional Calculus and Fractional Dierential, Wiley, New York, 1993. [9]zhang Y., A Finite dierence method for fractional partial dierential equation, Appl. Math. comput. 215 (2009) 524-529. | ||
آمار تعداد مشاهده مقاله: 193 تعداد دریافت فایل اصل مقاله: 132 |