| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,613,078 |
| تعداد دریافت فایل اصل مقاله | 56,292,375 |
λ-Symmetry method and the Prelle-Singer method for third-order differential equations | ||
| Theory of Approximation and Applications | ||
| مقاله 3، دوره 12، شماره 2، اسفند 2018، صفحه 29-42 اصل مقاله (306.38 K) | ||
| نوع مقاله: Review Articles | ||
| نویسنده | ||
| Khodayar Goodarzi* | ||
| Department of Mathematics, Brujerd Branch, Islamic Azad University, Broujerd, Iran | ||
| چکیده | ||
| In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations. | ||
| کلیدواژهها | ||
| Symmetry؛ λ-Symmetry؛ Integrating factor؛ First integral؛ Order reduction | ||
|
آمار تعداد مشاهده مقاله: 177 تعداد دریافت فایل اصل مقاله: 155 |
||